PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemistry of skarn and porphyry deposits in relation to epithermal mineralization in the Arasbaran metallogenic zone, NE Tabriz, Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Arasbaran metallogenic zone in northern Iran is part of the Alborz-Azerbaijan magmatic zone, which developed along the southern margin of Eurasia during the Early Mesozoic-Late Cenozoic. This region hosts precious and base metal mineralization, including porphyry, skarn, and epithermal copper, molybdenum, and gold deposits. Rare earth element variations across all the deposits are similar, indicating a similar source for these elements. The north-west trending belt comprising the Nabijan to the Sonajil deposits consistently shows chiefly alkaline conditions of formation. Fluid inclusion studies indicate that both high and low temperature hydrothermal fluids participated in the formation of all of the deposits. The mineralization age decreases from north to south and east to west and, although metal zonation is complex, the Cu-Au association post-dated the Cu-Mo mineralization reflecting that the ore fluid evolved in terms of both cooling and chemical changes due to fluid-fluid and fluid-rock interactions. In this region most deposits record a concentric zonation, with the centres preserving porphyry and skarn deposits and deposits becoming progressively epithermal toward the outer parts of the mineralizing system. According to this, the mineralization age decreases from the porphyry and skarn deposits to the epithermal deposits. The homogenization temperature and salinity both decrease from the centre to the outer zone. The pattern of homogenization temperature zonation, which is concordant with salinity zonation, suggests that fluids migrated up-dip and towards the margins of the zonation system.
Rocznik
Strony
141--164
Opis fizyczny
Bibliogr. 87 poz., fot., rys., tab., wykr.
Twórcy
  • University of Tabriz, Department of Earth Sciences, Faculty of Natural Sciences, Tabriz, Iran
  • Lorestan University, Department of Geology, Faculty of Natural Sciences, Khoram Abad, Iran
  • Lorestan University, Department of Geology, Faculty of Natural Sciences, Khoram Abad, Iran
  • University of Tabriz, Department of Earth Sciences, Faculty of Natural Sciences, Tabriz, Iran
  • Lorestan University, Department of Geology, Faculty of Natural Sciences, Khoram Abad, Iran
Bibliografia
  • 1. Aftabi, A., Atapour, H., 2010. Alteration geochemistry of volcanic rocks around Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: implications for regional exploration. Journal of Resource Geology, 61: 76-90.
  • 2. Aftabi, A., Taghipour, N., Mathur, R., 2008. Geology and Re-Os geochronology of mineralization of the Meiduk porphyry copper deposit, Iran. Journal of Resource Geology, 58: 143-160.
  • 3. Aghazadeh, M., Castro, A., Badrzadeh, Z., Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz Belt, Iran. Geological Magazine, 148: 980-1008.
  • 4. Aghazadeh, M., Hou, Z., Badrzadeh, Z., Zhou, L., 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70: 385-406.
  • 5. Akbarpur, A., 2007. Economic geology of the Kiamaki area, eastern Azerbaijan, with spatial view on Cu-Au mineralization in Masjed Daghi (in Persian). Ph.D. thesis, Free University of Iran, Tehran, Iran.
  • 6. Alavi, M., 1994. Tectonic of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 22: 211-239.
  • 7. Alirezaei, S., Ebrahimi, S., Yuanming Pan., 2011. Geological setting, alteration, and fluid inclusion characteristics of Zaglic and Safikhanlo epithermal gold prospects, NW Iran. Geological Society Special Publications, 350: 133-147.
  • 8. Alirezaei, S., Einali, M., Jones, P., Hassanpour, Sh., Arjmandzadeh, R., 2016. Mineralogy, geochemistry, and evolution of the Mivehrud skarn and the associated pluton, northwest Iran. International Journal of Earth Sciences, 105: 849-868.
  • 9. Asiabanha, A., Foden, J., 2012. Post collisional transition from an extensional volcanosedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos, 148: 98-111.
  • 10. Atalu, S., 2006. Report of detail exploration in Sonajil Cu porphyry occurrence, east of Heris, Eastern Azerbaijan. National Iranian Copper Company (NICICO) (internal report).
  • 11. Aubert, D., Stille, P., Probst, A., 2001. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 65: 387-406.
  • 12. Azizi, H., Jahangiri, H., 2008. Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. Journal of Geodynamics, 45: 178-190.
  • 13. Azizi, H., Moinevaziri, H., 2009. Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics, 47: 167-179.
  • 14. Bakker, R.J., 1997. Clathrates: computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Computers, Geosciences, 23: 1-18.
  • 15. Bakker, R.J., 1999. Optimal Interpretation of Microthermometrical Data from Fluid Inclusion; Thermodynamic Modelling and Computer Programming. University Heidelberg, Germany.
  • 16. Baniadam, F., 2002. Study of geology and genesis of Au-Cu mineralization in the Nabijan area. M.Sc. thesis, Faculty of Earth Science, GSI.
  • 17. Batchelder, J., 1977. Light stable isotope and fluid inclusion study of the porphyry copper deposit at Copper Canyon, Nevada. Economic Geology, 72: 60-70.
  • 18. Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683-684.
  • 19. Brooking, D.G., 1984. Geochemical Aspects of Radioactive Waste Disposal. Springer, New York.
  • 20. Brown, P.E., 1989. Flincor: a microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, 74: 1390-1393.
  • 21. Calagari, A.A., 1997. Geochemical, stable isotope, noble gas and fluid inclusion studies of mineralization and alteration at Sungun porphyry copper deposit, East Azerbaijan, Iran: implication for genesis. Ph.D. thesis, Manchester University, Manchester.
  • 22. Calagari, A.A., 2003. Stable isotope (S, O, H and C) studies of the phyllic and potassic-phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran. Journal of Asian Earth Sciences, 21: 767-780.
  • 23. Calagari, A.A., Hosseinzadeh, G., 2006. The mineralogy of copper-bearing skarn to the east of the Sungun-Chay River, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 28: 423-438.
  • 24. Castro, A., Aghazadeh, M., Badrzadeh, Z., Chichorro, M., 2013. Late Eocene-Oligocene postcollisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos, 180-181: 109-127.
  • 25. Chivas, A.R., Wilkins, W.T., 1977. Fluid inclusion studies in relation to hydrothermal alteration and mineralization at the Koloula porphyry copper prospect, Guadalcanal. Economic Geology, 72: 153-169.
  • 26. Crinci, J., Jurkowic I., 1990. Rare earth elements in Triassic bauxites of Croatia Yugoslavia. Travaux, 19: 239-248.
  • 27. Daliran, F., Borg, G., Armstrong, R., Vennemann, T., Walther, J., Woodhead, J.D., 2007. Non sulphide zinc deposits, Iran: The hypogene emplacement and supergene modification history of the Angouran zinc deposit, NW-Iran. Series on the Researches on Ore Deposit and Mineral Resources, Report of The German Federal Institute for Geosciences and Natural Resources (BGR), Hannover.
  • 28. Dilek, Y., Sandvol, E., 2009. Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African plate boundary and the Cenozoic orogenic belts in the Eastern Mediterranean Region. Geological Society Special Publications, 327:127-160.
  • 29. Dilek, Y., Imamverdiyev, N., Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52: 536-578.
  • 30. Ebrahimi, S., Alirezaei, S., Pan, Y., 2009. Various epithermal precious metal systems in the Urmieh-Dokhtar magmatic assemblage, Iran. Goldschmidt Conference Abstracts.
  • 31. Einaudi, M.T., 1982. Description of skarns associated with porphyry copper plutons. In:Advances in Geology of the Porphyry Copper Deposits, Southwestern North America (ed. S.R. Titley): 139-184. University of Arizona Press, Tucson.
  • 32. Etminan, H., 1977. The discovery of porphyry copper-molybdenum mineralization adjacent to Sungun village in the northwest of Ahar and a proposed program for its detailed exploration. Confidential Report, Geological Report, Geological Survey of Iran.
  • 33. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42: 2033-2048.
  • 34. Ghadimzadeh, H., 2002. Economic geology and exploration for gold in the Safikhanlo-Noghdouz area (SE Ahar). M.Sc. thesis, Faculty of Earth Science, Geological Survey of Iran Tehran, Iran.
  • 35. Haas, J.L., 1971. The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Economic Geology, 66: 940-946.
  • 36. Hassanpour, Sh., 2010. Metallogeny and Mineralization of Copper and Gold in Arasbaran Zone (Eastern Azerbaijan) (in Persian with English abstract). Ph.D. thesis, Shahid Beheshti University, Tehran.
  • 37. Heidarzadeh, R., 2006. Mineralogy, alteration and genesis of gold mineralization in Saglik-Sarikhanlu area. M.Sc. thesis, Faculty of Earth Science, Geological Survey of Iran, Tehran, Iran.
  • 38. Hezarkhani, A., 2006. Petrology of the intrusive rocks within the Sungun Porphyry Copper Deposit, Azerbaijan, Iran. Journal of Asian Earth Science, 27: 326-340.
  • 39. Hezarkhani, A., Williams-Jones, A.E., 1998. Controls of alteration and mineralization in the Sungun Porphyry Copper Deposit, Iran: Evidence from fluid inclusions and stable isotopes. Economic Geology, 93: 651-670.
  • 40. Hosseinzadeh, G., 2008. Geology, geochemistry, fluid inclusions, alteration and genesis of Sonajil porphyry copper deposit, East of Heris, Eastern Azerbaijan. Ph.D. thesis, Tabriz University, Tabriz.
  • 41. Jamalia, H., Mehrabi, B., 2015. Relationships between arc maturity and Cu-Mo-Au porphyry and related epithermal mineralization at the Cenozoic Arasbaran magmatic belt. Ore Geology Reviews, 65: 487-501.
  • 42. Jamalia, H., Dilek, Y., Daliranc, F., Yaghubpurd, A., Mehrabid, B., 2010. Metallogeny and tectonic evolution of the Cenozoic Ahar-Arasbaran volcanic belt, northern Iran. International Geology Review, 52: 608-630.
  • 43. Karadag, M., Kupeli, S., Aryk, A., Ayhan, A., Zedef, V., Doyen, A., 2009. Rare earth elements (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya-Southern Turkey). Chemie der Erde, 69: 143-159.
  • 44. Karimpour, M.H., Malekzadeh, A., Nazi, M., 2014. Discrimination of different erosion levels of porphyry Cu deposits using ASTER Image processing in the Maherabad, Shadan Chah shaljami areas. Acta Geologia Sinica, 88: 1195-1213.
  • 45. Karimzadeh Somarin, A., Moayyed, M., 2002. Granite- and gabrodiorite-associated skarn deposits of NW Iran. Ore Geology Reviews, 20: 127-138.
  • 46. Kato, Y., 1999. Rare earth elements as an indicator to origins of skarn deposits, example of the Kamioka Zn-Pb and Yoshiwara-Sannotake (Cu-Fe) deposit in Japan. Resource Geology, 49: 183-198.
  • 47. Kikawada, Y., 2001. Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water. Chemical Geology, 176: 137-149.
  • 48. Knarchenko, S.M., Pokrovsky, B.G., 1995. The Tomtor alkaline ultrabasic massif and related REE-Nb deposit, Northern Siberia. Economic Geology, 90: 676-689.
  • 49. Laffitte, P., 1984. Metallogenic map of Europe and adjacent regions, 1:2,500,000 scale and explanatory memoir. UNESCO Earth Sciences Series, 17.
  • 50. Le Maitre, R.W., 2002. Igneous Rocks - A Classification and Glossary of Terms, 2d ed., Cambridge University Press.
  • 51. Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101: 635-643.
  • 52. Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World skarn deposits. Economic Geology, 100: 299-336.
  • 53. Mitchell, A.H.G., 1996. Distribution and genesis of some epizonal Zn-Pb and Au provinces in the Carpathian-Balkan region: Transactions of the Institution of Mining and Metallurgy, 105: B127-B138.
  • 54. Mohajjel, M., Fergusson, C.L., 2000. Dextral transpression in late Cretaceous continental collision, Sanandaj-Sirjan Zone, western Iran. Journal of Structural Geology, 22: 1125-1139.
  • 55. Mollai, H., 1993. Petrochemistry and genesis of the granodiorite and associated iron-copper skarn deposit of Mazraeh, Ahar, East-Azerbaijan, Iran. Ph.D. thesis, University of Rookee, India.
  • 56. Mollai, H., Sharma, R., Pe-Piper, G., 2009. Copper mineralization around the Ahar batholith, North of Ahar (NW Iran): evidence for fluid evolution and the origin of the skarn ore deposit. Ore Geology Reviews, 35: 401-414.
  • 57. Mollai, H., Pe-Piper, G., Dabiri., 2014. Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran. Geologica Carpathica, 65: 207-225.
  • 58. Nabatian, G., Jiang, S.Y., Honarmand, M., Neubauer, F., 2016. Zircon U-Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran. Lithos, 244: 43-58.
  • 59. Nabavi, M., 1976. An Introduction to the Geology of Iran (in Persian). Geological Survey of Iran Publication.
  • 60. Nash, J.T., Theodore, T.G., 1971. Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada. Economic Geology, 66: 385-399.
  • 61. Nash, J.T., 1976. Fluid inclusion petrology, data from porphyry copper deposits and applications to exploration. United States Geological Survey, Professional Paper, 907-D.
  • 62. Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
  • 63. Pollard, P.J., 1995. A special issue devoted to the geology of rare metal deposits, geology of rare metal deposits: an introduction and overview. Economic Geology, 90: 489-494.
  • 64. Purnik, P., 2006. Report of detail exploration for gold in the Sharafabad-Hizejan (Mazraeh-e-Shadi), NW Iran. Internal Report, Geological Survey of Iran.
  • 65. Radmard, K., Zamanian, H., Hosseinzadehgh, M.R., Ahmadi Khalaji, A., 2017. Geochemistry and hydrothermal evolution of ore deposition at the Mazraeh-e-Shadi-Hizehjan precious and base metal deposit, northeastern Tabriz, Iran. Journal of Mineralogy and Geochemistry, 194: 227-250.
  • 66. Radmard, K., Zamanian, H., Hosseinzadehgh, M.R., Ahmadi Khalaji, A., 2019. Constraints on ore formation conditions at the Mazra'eh Shadi epithermal deposit, NE Tabriz, Iran: evidences from geochemistry, sulphur isotope, quartz textures and fluid inclusion studies. Geological Quarterly, 63 (2): 230-247.
  • 67. Rard, J.A., 1988. Aqueous solubility's of praseodymium, europium and lutetium sulfates. Journal of Solution Chemistry, 17: 499-517.
  • 68. Richards, J.P., 2003. Metallogeny of Neotethys arc in central Iran, 7th Biennial Meeting, Society for Geology Applied to Mineral Deposits; Mineral exploration and sustainable development, Athens: 1237-1240.
  • 69. Roedder, E., 1984. Fluid inclusions. Reviews in Mineralogy, 12.
  • 70. Rolland, Y., Cox, S., Boullier, A., Pennacchioni, G., 2003. Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters, 214: 203-219.
  • 71. Rolland, Y., Billo, S., Corsini, M., Sosson, M., Galoyan, G., 2009. Blueschists of the Amassia-Stepanavan Suture Zone (Armenia): linking Tethys subduction history from E-Turkey to W-Iran. International Journal of Earth Sciences, 98: 533-550.
  • 72. Rollinson, H., 1993. Using Geochemical Data: Evolution, Presentation, Interpretation. Longman, London.
  • 73. Rose, A.W., Burt, D., 1979. Hydrothermal alteration. In Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes): 173-235. John Wiley and Sons, New York.
  • 74. Shand, S.J., 1927. Eruptive Rocks. D. Van Nostrand Company, New York.
  • 75. Shokohi, H., 2007. Report of 1:1000 geological map and drillings in Nabijan area. Internal Report, Geological Survey of Iran.
  • 76. Sillitoe, R.H., 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44: 373-388.
  • 77. Simmonds, V., Moazzen, M., 2015. Re-Os dating of molybdenites from Oligocene Cu-Mo-Au mineralized veins in the Qarachilar area, Qaradagh batholith (northwest Iran): implications for understanding Cenozoic mineralization in South Armenia, Nakhchivan and Iran. International Geology Review, 57: 290-304.
  • 78. Simmonds, V., Moazzen, M., Mathur, R., 2017. Constraining the timing of porphyry mineralization in northwest Iran in relation to Lesser Caucasus and Central Iran; Re-Os age data for Sungun porphyry Cu-Mo deposit. International Geology Review, 59: 1561-1574.
  • 79. Sosson, M., Rolland, Y., Corcini, M., Danelian, T., Stephan, J.F., Avagyan, A., Melkonian, R., Jrbashian, R., Melikian, L., Galoian, G., 2005. Tectonic evolution of Lesser Caucausus (Armenia) revisited in the light of new structural and stratigraphic results. Geophysical Research Abstracts, 7: 06224.
  • 80. Taylor, Y., McLennan, S.M., 1985. The Continental Crust: Its Composition and evolution. Blackwell, Oxford.
  • 81. Wilkinson, J.J., 2001. Fluid inclusion in hydrothermal ore deposits. Lithos, 55: 229-272.
  • 82. William-Jones, A.E., Heinrich, C.A., 2005. Vapour transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100: 1287-1312.
  • 83. Wood, S.A., 1990. The aqueous geochemistry of the ra-re-earth elements and Yttrium. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chemical Geology, 88: 99-125.
  • 84. Yang, Z., Hou, Z., White, N.C., Chang, Z., Li, Z., Song, Y., 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36: 133-159.
  • 85. Yusoff, Z.M., Ngwenya, B.T., Parsons, I., 2013. Mobility and fractionation or REE during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349-350: 71-86.
  • 86. Zarasvandi, A., Liaghat, S., Zentilli, M, 2005. Geology of the Darreh-Zerreshk and Ali-Abad Porphyry Copper Deposits, Central Iran. International Geology Review, 47: 620-646.
  • 87. Zarasvandi, A., Rezaei, M., Raith, J., Lentz, D., Azimzadeh, A.-M., Pourkaseb, H., 2015. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au Deposit, Central Iran. Journal of Asian Earth Sciences, 111: 175-191.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1bb6667-4236-45e6-876d-37ab68c74059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.