PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temporary stability of compressive strength of flow and universal type LC PMCCS materials

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports the results of compressive strength and elasticity studies of light-cured polymer matrix ceramic composites (LC PMCCs). The main purpose was to obtain new data on experimental composites and compare them with commercial composites from the world’s leading manufacturer. The objective was to investigate the relationship between the content of reinforcing components in the composites studied and the stability of their strength in time, expressed as the number of fatigue thermal cycles.
Rocznik
Strony
22--33
Opis fizyczny
Bibliogr. 30 poz., rys., wykr., tab.
Twórcy
autor
  • Main School of Fire Service, Firefighting and Rescue Equipment Division, Warsaw, Poland,
autor
  • Medical University of Lublin, Department of Conservative Dentistry, Lublin, Poland
autor
  • University of Economics and Innovation in Lublin, Mechanical Engineering Section, Lublin, Poland
autor
  • University of Economics and Innovation in Lublin, Transport Section, Lublin, Poland
  • Lublin University of Technology, Department of Quantitative Methods in Management, Lublin, Poland
autor
  • Lublin University of Technology, Institute of Transport Combustion Engines and Ecology, Lublin, Poland
Bibliografia
  • 1. Shalaby S.W., Salz U.: Polymers for dental and orthopedic applications. CRC Press, Boca Raton 2007.
  • 2. Rodrigues Junior S.A., Ferracane J.L., Bona A.D.: Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dental Materials 24 (2008), 426-431.
  • 3. Bechtold J., dos Santos P.J., Anido-Anido A., di Hipolito V., Alonso R.C.B., D’Alpino P.H.P.: Hardness, polymerization depth, and internal adaptation of Class II silorane composite restorations as a function of polymerization protocol. European Journal of Densitry 6 (2012), 133-140.
  • 4. Walczak A., Pieniak D., Niewczas A., Niewczas A.M., Kordos P.: Study of ceramic-polymer composites reliability based on the bending strength test. Journal of KONBiN, 35 (2015), 169-178.
  • 5. Pieniak D., Niewczas A.M.: Phenomenological evaluation of fatigue cracking of dental restorations under conditions of cyclic mechanical loads. Acta of Bioengineering and Biomechanics 14 (2012), 9-17.
  • 6. Ivanisevic A., Lainovic T., Blazic L., Vilotic M.: Influence of light-curing mode on the mechanical properties of dental resin nanocomposites. 24th DAAAM International Symposium on Intelligence Manufacturing and Automation, 2013, Procedia Engineering 69 (2014), 921-930.
  • 7. Eftekhari M, Fatemi A.: On the strengthening effect of increasing cycling frequency on fatigue behavior of some polymers and their composites: Experiments and modeling. International Journal of Fatigue 87 (2016), 153–166.
  • 8. Musanje L., Darvell B.: Effects of strain rate and temperature on the mechanical properties of resin composites. Dental Materials 20 (2004), 750–765.
  • 9. Stewardson D.A., Shortall A.C., Marquis P.M.: The effect of clinically relevant thermocycling on the flexural properties of endodontic post materials. Journal of Dentistry 38 (2010), 437–442.
  • 10. Leibrock H., Degenhart M., Behr M., Rosentritt M., Handel G.: In vitro study on the effect of thermo- and load-cycling on the bond strength of porcelain repair systems. Journal of Oral Rehabilitation 26 (1999), 130–7.
  • 11. Arsecularatne J.A., Chung N.R.: An in vitro study of the wear behaviour of dental composites. Biosurface nad Biotribology, 3 (2016), 102-113.
  • 12. Niewczas A., Pieniak D., Bachanek T., Surowska B., Bieniaś J., Pałka K.: Prognosing of functional degradation of bio-mechanical systems exemplified by the tooth-composite filling system, Eksploatacja i Niezawodnosc – Maintenance and Reliability 1 (2010), 23-34.
  • 13. Kordos P., Hunicz J., Niewczas A.: The station designed for accelerated fatigue tests of dental materials. Maintenance and Reliability 1 (2009), 63-69.
  • 14. Pieniak D., Niewczas A., Kordos P.: Influence of thermal fatigue and ageing on the microhardness of polymer-ceramic composites for bio-medical applications. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2 (2012), 181–188.
  • 15. Ferracane J.L., Palin W.M.: Effects of particulate filler systems on the properties and performance of dental polymer composites. In Vallittu P. editor, Non - Metallic Biomaterials for Tooth Repair and Replacement, Woodhead Publishing, Cambridge 2012.
  • 16. Lohbauer U., Belli R., Ferracane J.L.: Factors involved in mechanical fatigue degradation of dental resin composites. Journal of Dental Research 92 (2013), 584-91.
  • 17. Randolph L.D., Palin W.M., Gaetane L., Leprince J.G.: Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dental Materials 32 (2016), 1586–1599.
  • 18. Hambire U.V., Tripathi V.K.: Optimization of compressive strength of zirconia based dental composites. Bulletin of Materials Science 37 (2014), 1315-1320.
  • 19. Hosseinalipour M., Javadpour J., Rezaie H., Dadras T., Hayati A.N.: Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. Journal of Prosthodontics 19 (2010), 112-117.
  • 20. Tanimoto Y., Hirayama S., Yamaguchi M., Nishiwaki T.: Static and dynamic moduli of posterior dental resin composites under compressive loading. Journal of the Mechanical Behavior of Biomedical Materials 7 (2011), 1531-1539.
  • 21. Beun S., Glorieux T., Devaux J., Vreven J., Leloup G.: Characterization of nanofilled compared to universal and microfilled composites. Dental Materials 23 (2007), 51-59.
  • 22. Antunes P.V., Ramalho A., Carrilho E.V.P.: Mechanical and wear behaviours of nano and microfilled polymeric composite: effect of filler fraction and size. Materials & Design 61 (2014), 50–60.
  • 23. Hahnel S., Dowling A.H., El-Safty S., Fleming G.J.: The influence of monomeric resin and filler characteristic on the performance of experimental resin-based composites (RBCs) derived from a commercial formulation. Dental Materials 28 (2012), 416-423.
  • 24. Drummond J.L.: Degradation, fatigue and failure of resin dental composite materials. Journal of Dental Research, 87 (2008), 710-719.
  • 25. Souza, R. O., Ozcan M., Michida S.M., de Melo R. M., Pavanelli C. A., Bottino M. A., Soares L. E., Martin A. A.: Conversion degree of indirect resin composites and effect of thermocycling o their physical properties. Journal of Prosthodontics 19 (2010), 218-225.
  • 26. Kawakami Y., Takeshige F., Hayashi M., Ebisu S.: Fatigue of tooth-colored restoratives in aqueous environment. Dental Materials Journal 26 (2007), 1-6.
  • 27. Janda R., Roulet J.F., Latta M., Ruttermann S.: Water sorption and solubility of contemporary resin-based filling materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials 82 (2007), 545-551.
  • 28. Ferracane JL: Hygroscopic and hydrolytic effects in dental polymer networks. Dental Materials 22 (2006), 211-222.
  • 29. Finer Y., Santerre J.P.: The influence of resin chemistry on a dental composite’s biodegradation. Journal of Biomedical Materials Research: Part A 69 (2004), 233-246.
  • 30. Yu B., Liu D., Liu F., He J.: Preparation and characterization of light-cured dental resin without methacrylate monomers derived from Bisphenol A. Advances in Polymer Technology 33 (2014), 21417.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1ba9d0f-adaa-448d-b92f-1966e19fe05f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.