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AN APPLICATION OF HILBERT-HUANG TRANSFORM AND PRINCIPAL 
COMPONENT ANALYSIS FOR DIAGNOSTICS OF CYLINDRICAL PLUNGE 

GRINDING PROCESS 

This paper presents a sensor based diagnostic system for a cylindrical plunge grinding process which ensures  
a reliable process state and tool wear identification. A new signal processing technique, i.e. Hilbert-Huang 
transform (HHT) was evaluated for this purpose based on the vibration and acoustic emission signal 
measurements. Numerical and experimental studies have demonstrated that the process state and tool wear may 
be effectively detected through a statistical analysis of the time-dependent amplitudes and instantaneous 
frequencies resulting from the HHT. A principal component analysis was used to diagnose different grinding 
process states.  

1. INTORODUCTON 

Automatic supervision of cylindrical grinding processes is still a challenge. The 
objective of the grinding process supervision is to diagnose incipient and abrupt symptoms 
of undesired process states or tool wear so that adequate continuous or gradual adjustments 
of basic kinematic parameters could be carried out to maintain the process in the optimal 
working region [1,2]. An essential prerequisite of satisfying these requirements is the use  
of effective signal processing techniques to find features in measured signals strongly 
correlated with undesired process states and tool wear. From a variety of monitoring 
techniques the vibration and acoustic emission measurements seems to be the most realistic 
approaches [1,3]. When using appropriate signal decomposition techniques the features 
hidden in these signals can be extracted and an estimation of the grinding results can be 
done. Unfortunately, the measured signals are in most cases nonlinear and nonstationary in 
nature. These signals originate from different sources, such as friction, grain impacts, plastic 
deformations, grain and bond fracture, grinding burn and also from the grinding chatter 
phenomenon [3]. These sources of information emit interfering waves, which makes the 
process of its separation very difficult. Consequently, due to the transient and nonstationary 
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nature of the analyzed signals the currently used traditional methods based on Fourier 
transform, which assume signal stationarity, are inappropriate for the monitoring of grinding 
processes. 

Recently, time-frequency analysis techniques, mainly short-time Fourier transform 
(STFT) and wavelet transform (WT) have been widely investigated for the monitoring 
of machining processes [4]. However, these methods were designed only for analysis 
of linear signals and moreover they require the choice of many preliminary parameters. In 
the case of STFT a selection of the appropriate size of the processing window is required to 
correspond with the frequency of the signal analyzed. Whereas, using the wavelet transform 
the results rely to a great extent on the parent wavelet employed, basic wavelet function and 
the discretization of scales [5,7,8]. Improper selection of any of these numerous parameters 
may significantly reduce the applicability of these methods in analyzing nonstationary and 
nonlinear signals. For these reasons a strong need for a new signal processing technique is 
well visible. This paper investigates the use of a newly developed technique, i.e. Hilbert-
Huang transform, for the diagnostics of plunge grinding process based on vibration and raw 
acoustic emission signals. 

2. DESCRIPTION OF HILBERT-HUANG TRANSFORM 

The Hilbert-Huang transform uses two processing techniques, i.e. empirical mode 
decomposition (EMD) and Hilbert spectral analysis [5]. It is an adaptive method designed 
particularly for analyzing nonlinear and nonstationary data changing even within one 
oscillation cycle. The EMD decomposes time-series into a set of intrinsic mode functions 
(IMFs) which represent simple oscillatory modes, but unlike the simple harmonic functions 
they can have variable amplitude and frequency along the time. The EMD decomposes data 
in a few steps. First, it identifies all the local extrema of the signal, i.e. minima and maxima 
points. These extrema are next interpolated by cubic splines that form the upper and lower 
envelopes of the analyzed signal, see Fig. 1a. 

 

Fig. 1. Illustration of the sifting process: a) the original data with the upper, lower envelope and resultant mean line; 
b) the data after the first sifting process 
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Next, a mean line m1(t) between the upper and lower envelopes is computed and 
subtracted out from the original signal x0(t). As a result, new data h1(t) are obtained, see  
Fig. 1b. This procedure is called a sifting process and is repeated on the successive data hi(t) 
until at any point the mean line between the upper and lower envelopes is near zero, see 
Fig. 1b. At this point, the first IMF component is found c1(t)=hn(t) which should represent 
the finest scale or the shortest period component of the signal x0(t). In the next step, this first 
IMF component c1(t) is extracted from the original data x0(t) and the whole sifting process is 
repeated on a new data x1(t)=x0(t)-c1(t) to obtain the successive components of increasing 
period with the last treated as a residue. The second part of HHT consists of Hilbert 
transform which is performed on each IMF component separately. Thus, it is possible to 
obtain the instantaneous frequencies and amplitudes of the signal analyzed. With Hilbert 
transform any signal x(t) may be transformed into a complex function by adding a complex 
part y(t) which actually is the same as x(t) but shifted in phase by 90 degrees. Having such  
a representation of the signal the instantaneous amplitude a(t) and frequency ω(t) functions 
may be given by the following formulas: 
 

( ) ( ) ( ) ( ) ( ) ( )( )( )txty
dt

d
ttytxta /tan, 122 −=+= ω               (1,2) 

 
To verify the usefulness of above described method a test signal was created composed 

of three pairs of interfering, exponentially changing sinusoidal waves of different 
frequencies and of different duration times to simulate long-lasting signals and burst signals 
which may be found in acoustic emission signal measurements, see Fig. 2a. The interfering 
waves were moved in phase by 2 radians. The results for HHT transform are shown in  
Fig. 2b. As may be seen the HHT gives very sharp time-frequency representation of the 
signal analyzed. 

 

 

Fig. 2. Results for HHT transform: a) the test signal, IMF components and amplitude error;  
b) The Hilbert spectrum HHT(t,ω) 
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The results received using HHT were compared to these obtained by two traditional 
methods, i.e. STFT and continuous WT, see Fig. 3. As may be seen, the STFT and wavelet 
transform spreads the energy in the frequency and time domain. In the case of the wavelet 
transform the main problem is to select the best basic wavelet function. When improperly 
selected, the results may be even worse than these obtained by STFT method.  

          

Fig. 3. Results of test signal analysis using: a) short-time Fourier transform;  
b) continuous wavelet transform for Morlet basic wavelet function 

3. EXPERIMENTAL TESTS 

In order to evaluate the usefulness of HHT method for the grinding process diagnostics 
several experimental investigations were carried out on a common cylindrical grinding 
machine equipped with adequate measurement units [6]. A vitrified 38A80KVBE grinding 
wheel was used. The workpieces were made of 34CrAl6C steel hardened to 50 HRC. The 
research was carried out at different working regions, connected with the grinding burn and 
increased grinding chatter growth. For this purpose the workpiece rotational speed was 
changed in a wide range from 0.7 to 2.0 rev/s. The grinding cycle was composed of a 
roughing phase and a rapid retraction of the grinding wheel. The infeed velocity of the 
grinding wheel vfr was the same for all the tests, equal to about 12 µm/s, so as to keep the 
material removal rate at constant level. Tests were continued until the end of the wheel life. 
To characterize the process state, the grinding vibration and raw acoustic emission signals 
were measured using sensors attached to the tailstock centre. After each grinding test the 
workpiece waviness errors were measured with the use of a specially designed measurement 
device with a wide measurement range and supported with a diamond gauging tip adapted 
from a roughness measuring device. 

4. ANALYSIS OF VIBRATION SIGNAL AND WORKPIECE WAVINESS ERRORS 

First, the ability of HHT for analyzing chatter vibrations, i.e. separation of frequency 
modes and detection of its growth was investigated. Vibrations were measured with  
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a frequency 100 kHz. In Fig. 4a a HHT spectrum of exemplified vibration signal is shown. 
As may be seen, the energy of each IMF is spread in a wide frequency range, which 
indicates the nonlinear and nonstationary nature of the vibration signal. However, since the 
energy is represented in the form of separate IMF components, the course of IMFs may be 
averaged in the frequency domain, see Fig. 4a. Thanks to that the individual vibration modes 
may be clearly differentiated and its mean frequency estimated, which would be directly 
impossible when using other decomposition methods. Such an averaged IMFs characteristics 
of the vibration signal for the sharp and the worn grinding wheel are shown in Fig. 4b. They 
display a significant increase of the IMFs amplitudes for the worn grinding wheel. 

 

 

Fig. 4. The HHT spectrum: a) of exemplified vibration signal;  
b) of averaged IMFs for sharp and worn grinding wheel (nw=2.0 rev/s) 

Analysis of all the IMF components indicates that this increase may be especially 
observed for frequencies of about 740Hz and 1400 Hz (fifth and fourth IMF). Moreover, the 
significant decrease of frequency level of these vibration modes for worn grinding wheel is 
well visible. This decrease may be caused by a change of stiffness and damping in the 
grinding contact area. To verify the physical meaning of these vibration modes a model  
of the workpiece and supporting system was created with the use of the finite element 
method. It turned out that the dominant vibration modes fit well to the first few transverse 
vibrations of the workpiece, see Fig. 5. Using the model the following frequencies of 
vibration modes were found: 138 Hz, 343 Hz, 753 Hz, 967 Hz, 1327 Hz. Apart from the 
fourth frequency (967 Hz), they correspond  well with the frequencies shown in Fig. 5.  

In Fig. 6 the amplitude increases of IMFs corresponding to the dominating vibration 
modes are shown for low and high workpiece rotational speeds. It may be seen that the 
influence of the workpiece peripheral speed on chatter development is almost insignificant.  

The second part of the research was connected with the analysis of waviness errors of 
the workpiece. The most obvious results on the workpiece are the so-called chatter marks 
[3]. The HHT was used to quantify these waviness errors. In Fig. 7 the mean amplitudes of 
dominant IMF components of waviness errors are shown. After an analysis it turned out that 
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the frequency of IMF waviness components multiplied by the workpiece rotational speed 
quite well correspond to the dominant vibration modes of the shaft. Thanks to this  
a mapping of vibration IMFs on waviness errors seems to be possible. 

 

 

Fig. 5. The HHT spectrum of a vibration signal and corresponding vibration modes of the shaft being ground 

 

 

Fig. 6. Changes of mean amplitude of IMF components during grinding: a) fourth IMF; b) fifth IMF 

 

 

Fig. 7. Changes of amplitude of the fifth and sixth IMF component of workpiece waviness errors for the successive 
grinding cycles: a) workpiece rotational speed nw = 0.7 rev/s; b) nw = 2 rev/s 
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5. ANALYSIS OF ACOUSTIC EMISSION SIGNAL 

In Fig. 8 an examplified HHT spectrum of AE signal is presented. After an analysis, it 
can be found that this spectrum shows a special activity for a few, well distinguished 
frequencies equal to about fIMF1=240, fIMF2=115, fIMF3=55 and fIMF4=24 kHz. 

 

Fig. 8. An exemplified HHT spectrum of AE signal 

The first IMF component of the highest frequency corresponds to the phenomena 
of acoustic emission generation, such as grain and bond fracture, e.g. during the grinding 
wheel self-sharpening or during the grinding burn. The variation of this IMF component for 
sharp and worn grinding wheel as well as for high and low workpiece peripheral speed is 
shown in Fig. 9. As may be seen for low workpiece peripheral speed a sudden changes  
of IMF amplitude appear which are the symptom of grinding burn, see Fig. 9b. The IMF 
components of lower frequencies relate to basic deformation mechanisms, undergoing in the 
workpiece material.  

 

 

Fig. 9. The course of the first AE IMF component for sharp and worn grinding wheel: a) high workpiece rotational 
speed nw=2 rev/s, b) low workpiece rotational speed nw=0.7 rev/s 
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The AE IMFs reveal other important features. For instance, a mean frequency, 
especially for the second IMF component, decreases significantly with the tool wear, 
whereas a mean amplitude increases, see Fig. 10. This may be connected with the decreasing  
number of the grinding wheel active abrasive grains.  

 

Fig. 10. The variation of mean frequency and mean amplitude (with a trend line) of the second AE IMF component 
(fIMF2 = 115kHz), nw = 0.7 rev/s 

6. DESCRIPTION OF THE DIAGNOSTIC SYSTEM 

A structure of the diagnostic system applying HHT is shown in Fig. 11. Basically, this 
approach employs HHT transform for the separation of transient and continuous components 
of the signals measured, feature extraction procedure and principal component analysis 
(PCA) for the process state and tool wear classification. The PCA was also used to reduce 
the dimensionality of feature patterns without a significant loss of information. 

 

Fig. 11. General structure of the diagnostic system 

In order to compute a principal component matrixes for the vibration and AE data a set 
of features was created for different grinding conditions involving states for sharp and worn 
grinding wheel as well as for low and high workpiece peripheral speeds. The feature vector 
was composed of maximum, mean value, standard deviation, kurtosis and skew of real 
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value, instantaneous amplitude and frequency of selected vibration and AE IMF 
components. After a preliminary analysis the fourth and fifth components were chosen for 
the vibration signal (see Fig. 4b) while for the AE signal the first and the second (see  
Fig. 8a). Due to the large size of the feature vector (15 features for each IMF component)  
a principal component analysis was carried out to reduce the dimensionality of data without 
any significant loss of information. As a result, the feature vector was reduced by more than 
83% for the vibration data, while for the AE data by 40%. The selected features and its 
average weight are shown in Table 1.  

Table 1. Selected features and its relative importance 

 
Max. 
value 

Mean 
value 

Standard 
deviation 

Kurtosis Skew 

Real IMF               

IMF amplitude                           

IMF frequency            

 - Vibration signal              - Acoustic emission signal  

 
In Table 2 the changes of the most significant features for the  vibration signal are 

presented. As may be seen, these features are strongly correlated with the tool wear.  

Table 2. Changes of the most significant features for vibration signal (nw=2rev/s) 

IMF no 
Grinding 

wheel 
condition 

Mean 
Ampl. 
[V] 

Mean 
Freq. 
[Hz] 

Max. 
Ampl. 
[V] 

Std. 
Dev. 
IMF 

Std. Dev. 
Ampl. 

Sharp 0.035 1300  0.2 0.03 0.02 
4 

Worn 0.21 1008 0.72 0.18 0.14 
Sharp 0.019 630 0.07 0.016 0.01 

5 
Worn 0.15 485 0.47 0.09 0.07 

Based on the new feature vectors the principal component matrixes (one for vibration 
and one for AE data) were computed which were next used to convert the feature space into 
a new set of variables, i.e. principal components being a linear combination of the original 
variables. These matrixes were next used to classify a verification set of features containing 
24 examples for different grinding conditions.  

6.1. CLASSIFICATION RESULTS 

A scatter plot of the scores of the first two principal components for vibration data is 
shown in Fig. 12a. As may be seen, when using the first two components almost all the 
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grinding conditions were separated correctly. The presented results suggest that the grinding 
wheel wear as well as process states related to the grinding wheel thermal load and probably 
the workpiece thermal damage may be effectively detected using the features resulting from 
the HHT. In the case of AE data two distinct regions may be differentiated for the first 
principal component, which relates to the regions without and with the workpiece burn, see 
Fig. 12b. However, the scores for a sharp and worn grinding wheel may also be separated. 
This is due to the fact that both states, that is the wear of grinding wheel and the operation at 
low workpiece peripheral speeds have a similar effect on the AE signal characteristics. 
Summing up, the tool wear as well as the thermal damages of the grinding wheel (grain 
fracture) may be detected using a linear combination of only three quantities obtained from 
the principal component analysis. 

 

Fig. 12. Principal component scatter plot for: a) vibration and b) raw acoustic emission signal 

7. CONCLUSIONS 

This paper has discussed the approach of the grinding process state and tool wear 
diagnosis based on Hilbert-Huang transform. The analysis based on the test and real 
grinding data has shown that HHT transform is much better than other traditional signal 
processing techniques, like short-time Fourier or wavelet transform. The empirical mode 
decomposition method has been proved to be very effective in the separation of continuous 
and transient components from the vibration and raw AE signal  measurements. These 
components can be individually studied with the use of Hilbert spectral analysis to determine 
instantaneous frequencies and amplitudes. Through the statistical analysis of time-dependent 
amplitudes and frequencies the chatter development and undesired process states related to 
the grinding wheel and probably the workpiece thermal damage may be effectively detected. 
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