PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Military suitability of COTS UAV due to the level of radiated emissions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the assessment of the levels of radiated electromagnetic interference by commercial UAVs in the context of their popular use for various military tasks. The test was conducted in the frequency range from 30 MHz to 6 GHz, in an electromagnetically anechoic chamber, in accordance with the procedures provided for this type of checks. Apart from the control frequencies (which of course exceed the standards), it can be said that most of the tested UAVs using brushless motors do not exceed the emission levels specified by the military standard MIL-STD-461G. This opens the way to the use of COTS UAV as a carrier of electronic systems for the tasks of recognizing sources of radio signals in the investigated band.
Rocznik
Strony
art. no. e148838
Opis fizyczny
Bibliogr 37 poz., rys., tab.
Twórcy
  • Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] D. Srivastava, R. Pakkar, A. Langrehr, and C. Yamane, “Adaptable UAV Swarm Autonomy and Formation Platform,” in 2019 IEEE Aerospace Conference, USA, Mar. 2019, pp. 1-6, doi: 10.1109/AERO.2019.8741683.
  • [2] M.A. Ma’sum, M.K. Arrofi, G. Jati, F. Arifin, M.N. Kurniawan, pp. Mursanto, and W. Jatmiko, “Simulation of intelligent Unmanned Aerial Vehicle (UAV) For military surveillance,” in 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Indonesia, Sept. 2013, pp. 161–166, doi: 10.1109/ICACSIS.2013.6761569.
  • [3] E. Skjervold and O. T. Hoelsreter, “Autonomous, Cooperative UAV Operations Using COTS Consumer Drones and Custom Ground Control Station,” in 2018 IEEE Military Communications Conference (MILCOM), USA, Oct. 2018, pp. 1–6, doi: 10.1109/MILCOM.2018.8599684.
  • [4] T. Coffey and J.A. Montgomery, “The Emergence of Mini UAVs for Military Applications,” Def. Horiz., no. 22, pp. 1–8, Dec. 2002.
  • [5] S.J. Kim and N.J. Sheikh, “Acquisition of Commercial-Off-The-Shelf (COTS) Unmanned Aerial Systems: Lessons Learned from the South Korean Military,” in 2022 Portland International Conference on Management of Engineering and Technology (PICMET), USA, pp. 1–7, Aug. 2022, doi: 10.23919/PICMET53225.2022.9882659.
  • [6] M. Gargalakos, “The role of unmanned aerial vehicles in military communications: application scenarios, current trends, and beyond,” J. Def. Model. Simul.-Appl. Methodol. Technol., July 2021, doi: 10.1177/15485129211031668.
  • [7] P. Stodola, J. Kozubek and J. Drozd, “Using Unmanned Aerial Systems in Military Operations for Autonomous Reconnaissance,” in Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science, vol. 11472, pp. 514–529, Oct. 2018, doi: 10.1007/978-3-030-14984-0_38.
  • [8] A. Gupta, T. Afrin, E. Scully and N. Yodo, “Advances of UAVs toward Future Transportation: The State-of-the-Art, Challenges, and Opportunities,” Future Transp., vol. 1, no. 2, pp. 326–350, 2021. doi: 10.3390/futuretransp1020019.
  • [9] C. Marczok, U. Maaß, E. Hoene, I. Ndip, K.D. Lang, and D. Hasselberg, “Analysis and improvement of a spark plug for less radiated electromagnetic emissions,” in 2014 International Symposium on Electromagnetic Compatibility, Sweden, Sept. 2014, pp. 385–390, doi: 10.1109/EMCEurope.2014.6930937.
  • [10] F. Pavlovčič, “Commutator motors as EMI sources,” in SPEEDAM 2010, Italy, 2010, pp. 1789–1793, doi: 10.1109/SPEEDAM.2010.5545039.
  • [11] H. Diamond and F.G. Gardner, “Engine-Ignition Shielding for Radio Reception in Aircraft,” Proc. Inst. Radio Eng., vol. 18, no. 5, pp. 840–861, May 1930, doi: 10.1109/JRPROC.1930.222075.
  • [12] M.A. Jabbar and M.A. Rahman, “Radio frequency interference of electric motors and associated controls,” IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 27–31, Jan.-Feb. 1991, doi: 10.1109/28.67528.
  • [13] D.L. Gabriel, J. Meyer, and F. Du Plessis, “Brushless DC motor characterisation and selection for a fixed wing UAV,” in IEEE Africon’11, Sept. 2011, pp. 1–6, doi: 10.1109/AFRCON.2011.6072087.
  • [14] M.K. Pandey, A. Tripathi, and B. Dwivedi, “A technique to minimize the effect of current harmonics in a brushless DC motor drive,” in 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), New Zealand, June 2015, pp. 702–706, doi: 10.1109/ICIEA.2015.7334199.
  • [15] Z. Sun, L. Zhong, X. Cheng, and J. Guo, “Analysis of Electromagnetic Interference and Restraining Measures of Brushless DC Motor Drive System,” in 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), China, Jan. 2023, pp. 382–385, doi: 10.1109/ICPECA56706.2023.10076028.
  • [16] O. Araar, M.Z. Mimouni, K. Fellah, and H. Osmani, “Identification & control of a multirotor UAV in the presence of actuator asymmetry,” in 2017 25th Mediterranean Conference on Control and Automation (MED), Malta, July 1017, pp. 1035–1040, doi: 10.1109/MED.2017.7984254.
  • [17] A.H. Zulkipli, T. Raj, F.H. Hashim, and A.B. Huddin, “Characterization of DC brushless motor for an efficient multicopter design,” in 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), Malaysia, 2016, pp. 586–591, doi: 10.1109/ICAEES.2016.7888114.
  • [18] “Parrot AR Drone 2.0.” Productz. [Online]. Available: https://productz.com/en/parrot-ar-drone-2-0/p/bVaW (accessed: 22-05-2023).
  • [19] Phantom 4 Pro User Manual v.2.0, 2021.11.
  • [20] DJI Mavic 3 User Manual v1.0, 2021.11.
  • [21] DJI FPV User Manual v1.2, 2021.06.
  • [22] Tello User Manual v1.4, 2018.09.
  • [23] S. Pikalov, E. Azaria, S. Sonnenberg, B. Ben-Moshe, and A. Azaria, “Vision-Less Sensing for Autonomous Micro-Drones,” Sensors, vol. 21, no. 16, p. 5293, Aug. 2021, doi: 10.3390/s21165293.
  • [24] “NXP HoverGames drone kit including RDDRONE-FMUK66 and peripherals,” NPX. [Online]. Available: https://www.nxp.com/design/designs/nxp-hovergames-drone-kit-including-rddrone-fmuk66-and-peripherals:KIT-HGDRONEK66 (accessed: 22-05-2023).
  • [25] Requirements for the control of electromagnetic interference characteristics of subsystems and equipment, MIL-STD-461G, Department of Defense Interface Standard, Dec. 2015.
  • [26] R. Przesmycki and R. Kubacki, “EMC requirements for equipment used in the Polish army – Impact of changes the NO-06-A500:2012 standard on the measuring results,” in 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Poland, 2014, pp. 1–4. doi: 10.1109/MIKON.2014.6899936.
  • [27] Wymagania dotyczące aparatury pomiarowej i metod pomiaru zaburzeń radioelektrycznych oraz odporności na zaburzenia – Część 4-2: Niepewności, statystyka i modelowanie poziomu dopuszczalnego – Niepewność aparatury pomiarowej, PN-EN 55016-4-2:2011/A1, Polski Komitet Normalizacyjny, 2014.
  • [28] B.N. Taylor and C.E. Kuyatt, “NIST Technical Note 1297, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” U.S. Department of Commerce Technol. Administration, National Institute of Standards and Technology, Sep. 1994
  • [29] X. Zhang, X. Wang, and Y. Wei, “Research of Security Strategy of UAV Board Data link,” Comput. Secur., vol. 3, pp. 62–64, 2008.
  • [30] D. Zhang, Y. Chen, and E. Cheng, “Effects of Electromagnetic Interference (EMI) on Information Link of UAV,” Trans. Beijing Inst. Technol., vol. 39, pp. 756–762, 2019.
  • [31] H. Weilin, “Alcohol-Soluble Electromagnetic Wave Shielding Coating,” Guangdong Dewey Technology Co Ltd, Chinese Patent CN101880499.
  • [32] D.D.L. Chung, “Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing,” Carbon, vol. 50, pp. 3342–3353, 2012, doi: 10.1016/j.carbon.2012.01.031.
  • [33] L. Chen et al., “Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites,” Carbon, vol. 95, pp. 10–19, Dec. 2015, doi: 10.1016/j.carbon.2015.08.011.
  • [34] Y. Zhan, Z. Long, X. Wan, J. Zhang, S. He, and Y. He, “3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance,” Appl. Surf. Sci., vol. 444, pp. 710–720, Jun. 2018, doi: 10.1016/j.apsusc.2018.03.006.
  • [35] Y. Jia, K. Li, L. Xue, J. Ren, S. Zhang, and H. Li, “Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC) n matrix composites,” Carbon, vol. 111, pp. 299–308, Jan. 2017, doi: 10.1016/j.carbon.2016.10.004.
  • [36] S. Tanabe, Y. Murata, H. Chishaki, and T. Shimato, “3D-MoM analysis of radio frequency noise radiation from HVDC converter station,” in 1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record, USA, 1999, pp. 980–985 vol. 2, doi: 10.1109/ISEMC.1999.810199.
  • [37] Y. Chen, D. Zhang, E. Cheng, and X. Wang, “Investigation on susceptibility of UAV to radiated IEMI,” in 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC), Singapore, 2018, pp. 718–722, doi: 10.1109/ISEMC.2018.8393875.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1b0fd45-c61c-419b-ac4a-23ade71831ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.