Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: With the increasing number of pediatric computed tomography (CT) examinations, there is a need to optimise protocols for children by adopting examination-specific protocols customised to the patient’s age, size, imaging region, and clinical indication. This study aimed to assess the radiation doses in pediatric CT examinations and compare them to international standards. Material and methods: A cross-sectional retrospective study design was adopted to probe patient records at the radiology department of a teaching hospital in Ghana. Thus, scan parameters, volume computed tomography dose index (CTDIvol), dose length product (DLP), as well as demographic data, were recorded from 496 pediatric patients (age 0-15 years) undergoing head, chest, and abdominopelvic CT examinations. Local Diagnostic Reference Levels (LDRLs) were established using the 75th percentile of patient dose values for each protocol and age group. These local levels were then compared with DRLs from other studies. Results: Head CT was the most performed examination (35.0%) compared to chest (32.0%) and abdominopelvic (33.0%). The male group recorded the highest (59.1%) percentage of CT examinations compared to the female group. While LDRL values from this study were generally lower than data from other studies, the CTDIvol and DLP for head scans of patients between 11 and 15 years were found to be higher than the data from other studies. Conclusions: Our study has established LDRLs for standard pediatric CT examinations in the teaching hospital. The LDRLs were generally lower than those reported in other studies, except for head scans in patients aged 11 to 15 years. These findings suggest that there are opportunities for further optimisation of pediatric CT imaging protocols at this facility.
Rocznik
Tom
Strony
256--262
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Department of Medical Imaging Technology and Sonography, University of Cape Coast, Cape Coast, Ghana
autor
- Department of Medical Imaging Technology and Sonography, University of Cape Coast, Cape Coast, Ghana
autor
- Radiation Protection Institute, Ghana Atomic Energy Commission, Accra, Ghana
autor
- Department of Physics Education, University of Education, Winneba, Ghana
autor
- Radiology Department, Akershus University Hospital, Lørenskog, Norway
Bibliografia
- 1. Ginat DT, Gupta R. Advances in Computed Tomography Imaging Technology. Annu Rev Biomed Eng. 2014;16(1):431-453. doi:10.1146/annurev-bioeng-121813-113601
- 2. Ogbole G. Radiation dose in paediatric computed tomography: risks and benefits. Ann Ibadan Postgrad Med. 2011;8(2). doi:10.4314/aipm.v8i2.71823
- 3. European Commission. Directorate General for Energy. European Guidelines on Diagnostic Reference Levels for Paediatric Imaging. Publications Office; 2018. doi:10.2833/486256
- 4. Foley SJ, Evanoff MG, Rainford LA. A questionnaire survey reviewing radiologists’ and clinical specialist radiographers’ knowledge of CT exposure parameters. Insights Imaging. 2013;4(5):637-646. doi:10.1007/s13244-013-0282-4
- 5. Brenner DJ, Hall EJ. Computed Tomography — An Increasing Source of Radiation Exposure. N Engl J Med. 2007;357(22):2277-2284. doi:10.1056/nejmra072149
- 6. Hart D, Wall B. Radiation exposure of the UK population from medical and dental X-ray examinations. NRPB Chilton, UK; 2002.
- 7. Brady Z, Ramanauskas F, Cain TM, Johnston PN. Assessment of paediatric CT dose indicators for the purpose of optimisation. The British Journal of Radiology. 2012;85(1019):1488-1498. doi:10.1259/bjr/28015185
- 8. Mohd Tap NH, Jaafar Sidek MA, et al. Computed Tomography Dose in Paediatric Care: Simple Dose Estimation Using Dose Length Product Conversion Coefficients. MJMS. 2018;25(4):82-91. doi:10.21315/mjms2018.25.4.8
- 9. Issahaku S, Amoh SM, Acquah IK, Nunoo G, Sackey TA. Establishment of institutional Diagnostic Reference Levels for Computed Tomography examination at the University of Ghana Medical Centre. Health Technol. 2024;14(6):1199-1207. doi:10.1007/s12553-024-00902-2
- 10. Botwe BO, Schandorf C, Inkoom S, Faanu A, Rolstadaas L, Goa PE. National indication-based diagnostic reference level values in computed tomography: Preliminary results from Ghana. Physica Medica. 2021;84:274-284. doi:10.1016/j.ejmp.2021.03.012
- 11. Gedel AM, Gablah PG. Management of radiation dose to pediatric patients undergoing CT examination at Korle-Bu teaching hospital, Accra-Ghana. Advances in Physics Theories and Applications. 2014;37:30-37.
- 12. Muhogora WE, Rehani MM. Patient Doses in CT and Radiography in Africa. IFMBE Proceedings. Published online 2009:536-539. doi:10.1007/978-3-642-03902-7_153
- 13. Deak PD, Smal Y, Kalender WA. Multisection CT Protocols: Sex- and Age-specific Conversion Factors Used to Determine Effective Dose from Dose-Length Product. Radiology. 2010;257(1):158-166. doi:10.1148/radiol.10100047
- 14. Kanal KM, Butler PF, Chatfield MB, et al. U.S. Diagnostic Reference Levels and Achievable Doses for 10 Pediatric CT Examinations. Radiology. 2022;302(1):164-174. doi:10.1148/radiol.2021211241
- 15. Kang Y, Zhu X, Lin Z, et al. Compare the Diagnostic and Prognostic Value of MLR, NLR and PLR in CRC Patients. Clin Lab. 2021;67(09/2021). doi:10.7754/clin.lab.2021.201130
- 16. Rawashdeh M, Abdelrahman M, Zaitoun M, Saade C, Alewaidat H, McEntee MF. Diagnostic reference levels for paediatric CT in Jordan. J Radiol Prot. 2019;39(4):1060-1073. doi:10.1088/1361-6498/ab3ee2
- 17. van der Merwe CM, Mahomed N. An audit of radiation doses received by paediatric patients undergoing computed tomography investigations at academic hospitals in South Africa. South African Journal of Radiology. 2020;24(1). doi:10.4102/sajr.v24i1.1823
- 18. Gao Y, Quinn B, Pandit-Taskar N, et al. Patient-specific organ and effective dose estimates in pediatric oncology computed tomography. Physica Medica. 2018;45:146-155. doi:10.1016/j.ejmp.2017.12.013
- 19. Endalamaw A, Assimamaw NT, Ayele TA, et al. Prevalence of childhood Cancer among children attending referral hospitals of outpatient Department in Ethiopia. BMC Cancer. 2021;21(1). doi:10.1186/s12885-021-08014-0
- 20. Agorsah CK. Patient dose assessment of adult and paediatric chest computed tomography examination: comparison between automatic exposure control and fixed tube techniques. Thesis. University of Ghana; 2018. Accessed August 4, 2025. http://ugspace.ug.edu.gh/handle/123456789/25839
- 21. AL-Rammah TY. CT radiation dose awareness among paediatricians. Ital J Pediatr. 2016;42(1). doi:10.1186/s13052-016-0290-3
- 22. Paolicchi F, Faggioni L, Bastiani L, Molinaro S, Caramella D, Bartolozzi C. Real practice radiation dose and dosimetric impact of radiological Staff training in body CT examinations. Insights Imaging. 2013;4(2):239-244. doi:10.1007/s13244-013-0241-0
- 23. Suntharalingam S, Wetter A, Guberina N, et al. Impact of the scout view orientation on the radiation exposure and image quality in thoracic and abdominal CT. Eur Radiol. 2016;26(11):4072-4079. doi:10.1007/s00330-016-4285-7
- 24. ICRP. International Commission on Radiological Protection 2017 Annual Report. 2017. Accessed August 4, 2025. https://www.icrp.org/docs/ICRP%202017%20Annual%20Report.pdf
- 25. Elgazzar AH, Kazem N. Biological Effects of Ionizing Radiation. The Pathophysiologic Basis of Nuclear Medicine. Published online June 27, 2014:715-726. doi:10.1007/978-3-319-06112-2_21
- 26. Tonnessen BH, Pounds L. Radiation physics. Journal of Vascular Surgery. 2011;53(1):6S-8S. doi:10.1016/j.jvs.2010.05.138
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1af9a86-973d-4bcf-af74-b2ba90bdec04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.