PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Close-to-convexity properties of basic hypergeometric functions using their Taylor coefficients

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we find the conditions on parameters a, b, c and q such that the basic hypergeometric function zφ(a,b;c;q,z) and its q-Alexander transform are close-to-convex (and hence univalent) in the unit disc D:={z: |z|<1}.
Rocznik
Tom
Strony
53--67
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Department of Mathematics, Indian Institute of Technology, Roorkee 247 667, Uttarkhand, INDIA
  • Department of Mathematics, Indian Institute of Technology, Roorkee 247 667, Uttarkhand, INDIA
Bibliografia
  • [1] W.N. Bailey, Generalized hypergeometric series, Cambridge University Press, New York, 1935.
  • [2] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge Univ. Press, Cambridge, 1990
  • [3] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983
  • [4] B. Friedman, Two theorems on schlicht functions, Duke Math. J. 13 (1946), 171-177.
  • [5] E. Heine, Untersuchungen über die Reihe ..., J. Reine Angew. Math. 34 (1847) 285-328.
  • [6] M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl. 14 (1990), no. 1-4, 77-84.
  • [7] Küstner R., Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order α, Comput. Methods Funct. Theory 2 (2002), no. 2, 597-610.
  • [8] T. H. MacGregor, Univalent power series whose coefficients have monotonic properties, Math. Z. 112 (1969), 222-228.
  • [9] S. R. Mondal and A. Swaminathan, Coefficient conditions for univalency and starlikeness of analytic functioms, J. Math. Appl. 31 (2009), 77-90.
  • [10] Saiful R. Mondal and A. Swaminathan, Geometric properties of generalized Polylogarithm, Integral Transforms Spec. Funct. 21 (2010) 691-701.
  • [11] F. Rønning, A Szegő quadrature formula arising from q-starlike functions, in Continued Fractions and orthogonal functions (Loen, 1992), 356-352, Dekker, New York.
  • [12] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A 2 (1935), 167-188.
  • [13] A. Swaminathan, Inclusion theorems of convolution operators associated with normalized hypergeometric functions, J. Comput. Appl. Math. 197 (2006), no. 1, 15-28.
  • [14] A. Swaminathan, Univalent polynomials and fractional order differences of their coefficients, J. Math. Anal. Appl. 353 (2009), no. 1, 232-238.
  • [15] A. Swaminathan, Continued fraction expansion for certain hypergeometric functions, Proceedings of the International Conference on Mathematical Sciences, Center for Mathematical Sciences, Pala, Kerala, 1-22.
  • [16] A. Swaminathan, Pick functions and Chain Sequences for hypergeometric type functions, Communicated for publication.
  • [17] N. M. Temme, Special Functions, Wiley, New York, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1ababe0-bbec-403d-9d5b-3a6b3c51ab13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.