PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effects of Epoxidized Acrylated Castor Oil (EACO) on Soft Poly (vinyl chloride) Films as a Main Plasticizer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, an environmentally friendly type plasticizer was introduced. The synthesis consisted of two steps. In the first step, castor oil (CO) was acrylated and then the acrylated castor oil (ACO) was epoxidized with the presence of formic acid and hydrogen peroxide in the second step. The epoxidized acrylated castor oil (EACO) was characterized by FTIR and  1H-NMR techniques. The EACO was used as a main plasticizer to obtain plasticized PVC materials and compared with DOP. The results showed that EACO improved polyvinyl-chloride (PVC) plasticization performance and reduced Tg from 81.06°C to 1.40°C. Plasticized PVC materials with EACO showed similar mechanical properties and better thermal stability than DOP. EACO had better volatility stabilities, migration and solvent extraction in PVC than DOP. EACO can be used to replace DOP to prepare soft films.
Rocznik
Strony
13--19
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Chinese Academy of Forestry (CAF), Institute of Chemical Industry of Forest Products, National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration and Key Lab of Biomass Energy and Materials, Jiangsu Province, 16 Suojin North Road, Nanjing 210042, P.R. China
autor
  • Nanjing Tech University, College of Chemical Engineering, 30 Pu Zhu Road, Nanjing 211800, P.R. China
autor
  • Chinese Academy of Forestry (CAF), Institute of Chemical Industry of Forest Products, National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration and Key Lab of Biomass Energy and Materials, Jiangsu Province, 16 Suojin North Road, Nanjing 210042, P.R. China
  • Nanjing Forestry University, Co-Innovation Center of Effi cient Processing and Utilization of Forest Resources, Nanjing 211800, P.R. China
autor
  • Chinese Academy of Forestry (CAF), Institute of Chemical Industry of Forest Products, National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration and Key Lab of Biomass Energy and Materials, Jiangsu Province, 16 Suojin North Road, Nanjing 210042, P.R. China
  • Nanjing Forestry University, Co-Innovation Center of Effi cient Processing and Utilization of Forest Resources, Nanjing 211800, P.R. China
autor
  • Chinese Academy of Forestry (CAF), Institute of Chemical Industry of Forest Products, National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration and Key Lab of Biomass Energy and Materials, Jiangsu Province, 16 Suojin North Road, Nanjing 210042, P.R. China
  • Nanjing Forestry University, Co-Innovation Center of Effi cient Processing and Utilization of Forest Resources, Nanjing 211800, P.R. China
autor
  • Chinese Academy of Forestry (CAF), Institute of Chemical Industry of Forest Products, National Engineering Lab for Biomass Chemical Utilization, Key Lab on Forest Chemical Engineering, State Forestry Administration and Key Lab of Biomass Energy and Materials, Jiangsu Province, 16 Suojin North Road, Nanjing 210042, P.R. China
  • Nanjing Forestry University, Co-Innovation Center of Effi cient Processing and Utilization of Forest Resources, Nanjing 211800, P.R. China
Bibliografia
  • 1. Chen, J.X., Li, Y., Wang, J., Huang, K., Li, X. & Nie, J. Jiang. (2017). Synthesis and application of environmental soybean oil-based epoxidized glycidyl ester plasticizer for poly(vinyl chloride). European J. Lipid Sci. Technol. 119 (5). DOI: 10.1002/ejlt.201600216.
  • 2. Bocqué, M., Voirin, C., Lapinte, V., Caillol, S. & Robin, J.. (2016). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. J. Polym. Sci. Part B: Polymer Physics. 54 (1):11-33. DOI: 10.1002/pola.27917.
  • 3. Choi, W., Chung, J.W. & Kwak, S. (2014). Unentangled starshape poly(ε-caprolactone)s as phthalate-free PVC plasticizers designed for non-toxicity and improved migration resistance. ACS Applied Materials & Interfaces. 6 (14), 11118-11128. DOI: 10.1021/am500740v.
  • 4. Ventrice, P., Ventrice, D., Russo, E. & De. Sarro., G. (2013). Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. Environ. Toxicol. Pharmacol. 36 (1):88-96. DOI: 10.1016/j.etap.2013.03.014.
  • 5. Gardner, S.T., Wood, A.T., Lester, R., Onkst, P.E., Burnham, N., Perygin, D.H. & Rayburn, J. (2016). Assessing differences in toxicity and teratogenicity of three phthalates, Diethyl phthalate, Di-n-propyl phthalate, and Di-n-butyl phthalate, using Xenopus laevis embryos. J. Toxicol. & Environ. Health. 79 (2):1-12. DOI: 10.1080/15287394.2015.1106994.
  • 6. Chen, X., Xu, S., Tan, T., Lee, S.T., Cheng, S.H., Lee, F.W.F., Xu, S.J.L. & Ho, K.C. (2014). Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int. J. Environ. Res. Public Health. 11 (3), 3156-3168. DOI: 10.3390/ijerph110303156.
  • 7. Li, J. & Ko, Y.C. (2012). Plasticizer incident and its health effects in Taiwan. The Kaohsiung journal of medical sciences. 28 (7), S17-S21. DOI: 10.1016/j.kjms.2012.05.005.
  • 8. Yao, L., Chen, Q., Xu, W., Ye, Z., Shen, Z. & Chen, M.. (2017). Preparation of cardanol based epoxy plasticizer by click chemistry and its action on poly(vinyl chloride). J. Appl. Polym. Sci. 134 (23), 44890. DOI: 10.1002/APP.44890.
  • 9. Jia, P., Zhang, M., Hu, L. & Zhou, Y. (2016). Green plasticizers derived from soybean oil for poly(vinyl chloride) as a renewable resource material. Korean J. Chem. Engineer. 33 (3), 1080-1087. DOI: 10.1007/s11814-015-0213-9.
  • 10. Feng, G., Yun, H., Pu-you, J., Ma, Y. & Yong-hong, Z. (2015). Influence of a nitrogen-containing oil-based plasticizer on mechanical, thermal stability and fire performance of plasticized poly(vinyl chloride) and study of its mechanism of flame retardancy with Py-GC/MS. Industrial Crops and Products. 77, 883-894. DOI: 10.1016/ j.indcrop.2015.09.032.
  • 11. Qiu, J.F., Zhang, M.Q., Rong, M.Z., Wu, S.P. & Karger- -Kocsis, A.J. (2013). Rigid bio-foam plastics with intrinsic flame retardancy derived from soybean oil. J. Mater. Chem. A, 1(7), 2533-2542. DOI: 10.1039/C2TA01404A.
  • 12. Jia, P., Zhang, M., Hu, L., Zhou, J., Feng, G. & Zhou, Y. (2015). Thermal degradation behavior and flame retardant mechanism of poly(vinyl chloride) plasticized with a soybean-oil-based plasticizer containing phosphaphenanthrene groups. Polymer Degradation and Stability. 121, 292-302. DOI: 10.1016/j.polymdegradstab. 2015.09.020.
  • 13. Li, M., Li, S., Xia, J., Ding, C., Wang, M., Xu, L., Yang, X. & Huang, K. (2017). Tung oil based plasticizer and auxiliary stabilizer for poly(vinyl chloride). Materials & Design. 122, 366-375. DOI: 10.1016/j.matdes.2017.03.025.
  • 14. Chen, J., Wang, Y., Huang, J., Li, K. & Nie, X. (2018). Synthesis of tung oil based triglycidyl ester plasticizer and its effects on poly(vinyl chloride) soft films. ACS Sustainable Chemistry & Engineering. 6 (1), 642-651. DOI: 10.1021/acssuschemeng.7b02989.
  • 15. Jia, P., Hu, L., Yang, X., Zhang, M., Shang, Q., Zhou, A.Y. (2017). Internally plasticized PVC materials via covalent attachment of aminated tung oil methyl ester. RSC Advances. 7 (48), 30101-30108. DOI: 10.1039/c7ra04386d.
  • 16. Ang, D.T., Khong, Y.K. & Gan, S.N. (2016). Palm oil- -based compound as environmentally friendly plasticizer for poly(vinyl chloride). J. Vinyl and Additive Technol. 22 (1):80-87. DOI: 10.1002/vnl.21434.
  • 17. Jia, P., Zhang, M., Hu, L. & Zhou, Y. (2016). A novel biobased polyester plasticizer prepared from palm oil and its plasticizing effect on poly (vinyl chloride). Polish J. Chemical Technol. 18 (1):9-14. DOI: 10.1515/pjct-2016-0002.
  • 18. Carbonell-Verdu, A., Garcia-Sanoguera, D., Jorda-Vilaplana, A., Sanchez-Nacher, L. & Balart, R. (2016). A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. J. Appl. Polym. Sci. 133 (27), 43642. DOI: 10.1002/APP.43642.
  • 19. Carbonell-Verdu, A., Samper, M.D., Garcia-Garcia, D., Sanchez-Nacher, L. & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products. 104, 278-286. DOI: 10.1016/j.indcrop.2017.04.050.
  • 20. Faria-Machado, A.F., Silva, M.A.D., Vieira, M.G.A., Beppu, M.M. (2013). Epoxidation of modified natural plasticizer obtained from rice fatty acids and application on polyvinylchloride films. J. Appl. Polymer Sci. 127 (5), 3543-3549. DOI: 10.1002/app.37671.
  • 21. Nihul, PG., Mhaske, S.T., Shertukde, V.V. (2014). Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC). Iranian Polymer J. 23 (8), 599-608. DOI: 10.1007/s13726-014-0254-7.
  • 22. Ogunniyi, D.S. (2006). Castor oil: a vital industrial raw material. Bioresource technology. 97 (9), 1086-91. DOI: i:10.1016/j.biortech.2005.03.028.
  • 23. Raju, P., Nandanan, V. & Sunil, K.N.K. (2007). A Study on the Use of Castor Oil as Plasticizer in Natural Rubber Compounds. Progress in rubber, plastics and recycling technology. 23(3), 169-180.
  • 24. Tsujimoto, T., Haza, Y., Yin, Y. & Uyama, H. (2014). Synthesis of branched poly(lactic acid) bearing a castor oil core and its plasticization effect on poly(lactic acid). Polymer J. 43 (4), 425-430. DOI: 10.1038/pj.2011.3.
  • 25. Mehta, B., Kathalewar, M. & Sabnis, A.. (2014). Diester based on castor oil fatty acid as plasticizer for poly(vinyl chloride). J. Appl. Polymer Sci. 131 (11), 2928-2935. DOI: 10.1002/APP.40354.
  • 26. Jia, P., Bo, C., Zhang, L., Hu, L., Zhang, M. & Zhou, Y. (2015). Synthesis of castor oil based plasticizers containing flame retarded group and their application in poly (vinyl chloride) as secondary plasticizer. J. Industrial Engineer. Chem. 28, 217-224. DOI:10.1016/j.jiec.2015.02.017.
  • 27. Jia, P., Hu, L., Zhang, M. & Zhou, Y. (2016). TG-FTIR and TG-MS analysis applied to study the flame retardancy of PVC-castor oil-based chlorinated phosphate ester blends. J. Thermal Anal. Calorim. 124(3), 1331-1339. DOI: 10.1007/s10973-015-5199-3.
  • 28. Jia, P., Hu, L., Zhang, M., Feng, G. & Zhou, Y. (2017). Phosphorus containing castor oil based derivatives: Potential non-migratory flame retardant plasticizer. European Polymer J. 87, 209-220. DOI: 10.1016/j.eurpoly mj.2016.12.023.
  • 29. Feng, G., Jia, P., Zhang, L., Hu, L., Zhang, M. & Zhou, Y. (2015). Synthesis of a novel phosphorus-containing plasticizer based on castor oil and its application for flame retardancy of polyvinyl chloride. Korean J. Chem. Engineer. 32(6), 1201-1206. DOI: 10.1007/s11814-014-0288-8.
  • 30. Jia, P., Zhang, M., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Synthesis and application of environmental castor oil based polyol ester plasticizers for poly (vinyl chloride). ACS Sustainable Chemistry & Engineering, 3(9), 2187-2193. DOI: 10.1021/acssuschemeng.5b00449.
  • 31. Esen, H. & Çayli, G. (2016). Epoxidation and polymerization of acrylated castor oil. European J. Lipid Sci. Technol. 118(6), 959-966. DOI: 10.1002/ejlt.201500132.
  • 32. Çayli, G., Gürbüz, D. & Çınarli, A. (2018). Characterization and Polymerization of Epoxidized Methacrylated Castor Oil. European J. Lipid Sci. Technol. DOI: 10.1002/ejlt.201700189.
  • 33. Şahin, Y.M., Çaylı, G., Çavuşoğlu, J., Tekay, E. & Şen. S. (2016). Cross-linkable epoxidized maleinated castor oil: a renewable resin alternative to unsaturated polyesters. Int. J. Polymer Sci. DOI: 10.1155/2016/5781035.
  • 34. Müller, R. & Wilke, G. (2014). Synthesis and radiation curing of acrylated castor oil glycerides. J. Coatings Technol. Res. 11(6), 873-882. DOI: 10.1007/s11998-014-9596-5.
  • 35. Shibata, M. & Obara, S. (2012). Photo-cured organic- -inorganic hybrid composites of acrylated castor oil and methacrylate- substituted polysilsesquioxane. J. Appl. Polymer Sci. 126(S2). DOI: 10.1002/app.36582.
  • 36. Wang, M., Song, X., Jiang, J., Xia, J. & Li, M. (2017). Binary amide-containing tung-oil-based Ca/Zn stabilizers: effects on thermal stability and plasticization performance of poly(vinyl chloride) and mechanism of thermal stabilization. Polymer Degradation and Stability. 143, 106-117. DOI: 10.1016/j.polymdegradstab.2017.06.022.
  • 37. Chen, J., Nie, X. & Jiang, J. (2018). Synthesis and application of a novel cardanol-based plasticizer as secondary or main plasticizer for poly (vinyl chloride). Polymer International. 67(3), 269-275. DOI: 10.1002/pi.5503.
  • 38. Chen, J., Liu, Z., Nie, X. & Jiang, J. (2018). Synthesis and application of a novel environmental C26 diglycidyl ester plasticizer based on castor oil for poly (vinyl chloride). J. Mater. Sci. 53(12), 8909-8920. DOI: 10.1007/s10853-018-2206-7.
  • 39. Chandola, M. & Marathe, S. (2008). A QSPR for the plasticization efficiency of polyvinylchloride plasticizers. J. Molec. Graphics and Modelling. 26(5), 824-828. DOI: 10.1016/j.jmgm.2007.04.008.
  • 40. Haryono, A., Triwulandari, E. & Jiang, P. (2017). Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect. AIP Conference Proceedings. 1803(1), 020045. DOI: 10.1063/1.4973172.
  • 41. Yang, Y., Huang, J., Zhang, R. & Zhu, J. (2017). Designing bio-based plasticizers: Effect of alkyl chain length on plasticization properties of isosorbide diesters in PVC blends. Materials & Design. 126, 29-36. DOI:10.1016/j.matdes.2017.04.005.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1a19c98-a1bd-4dca-8626-21f38edb494c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.