PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of biochemical parameters on primary production in the Gulf of Gdańsk region : A model study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Understanding the changing levels of biochemical parameters and the factors that influence them throughout the seasons is crucial for comprehending the dynamics of marine ecosystems. It also helps us identify potential threats that could harm their condition, aiding decision-making processes related to their protection. This study focuses on examining the variations in nutrients (such as nitrates, phosphates, and silicates), dissolved oxygen, and phytoplankton within the Gulf of Gdańsk. Additionally, we analyze the primary production process at three representative locations. To achieve this, we used data from the EcoFish biochemical numerical model. To ensure the model's accuracy, we compared its results with in situ data from the ICES database. The comparison revealed high correlations and minimal errors. Furthermore, we investigated how limiting factors impact primary phytoplankton production and demonstrated how the intensity of spring diatom blooms influences the nature of cyanobacterial blooms in the summer.
Czasopismo
Rocznik
Strony
517--533
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • Ecohydrodynamics Laboratory, Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Ecohydrodynamics Laboratory, Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Ecohydrodynamics Laboratory, Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Andersen, J.H., Carstensen, J., Conley, D.J., Dromph, K., Fleming-Lehtinen, V., Gustafsson, B.G., Josefson, A.B., Norkko, A., Villnäs, A., Murray, C., 2017. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 92 (1), 135- 149. https://doi.org/10.1111/brv.12221
  • 2. Arheimer, B., Dahné, J., Donnelly, C., Lindström, G., Strömqvist, J., 2012. Water and nutrient simulations using the HYPE model for Sweden vs. the Baltic Sea basin - influence of input-data quality and scale. Hydrol. Res. 43, 315-329. https://doi.org/10.2166/nh.2012.010
  • 3. Blenckner, T., Möllmann, C., Stewart Lowndes, J., Griffiths, J.R., Campbell, E., De Cervo, A., Belgrano, A., Boström, C., Fleming, V., Frazier, M., Neuenfeldt, S., Niiranen, S., Nilsson, A., Ojaveer, H., Olsson, J., Palmlöv, C.S., Quaas, M., Rickels, W., Sobek, A., Viitasalo, M., Wikström, S.A., Halpern, B.S., 2021. The Baltic Health Index (BHI): Assessing the social-ecological status of the Baltic Sea. People and Nature 3, 359-375. https://doi.org/10.1002/pan3.10178
  • 4. Boyer, J.N., Kelble, C.R., Ortner, P.B., Rudnick, D.T., 2009. Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol. Indic. 9, 56-67. https://doi.org/10.1016/j.ecolind.2008.11.013
  • 5. Carmichael, W., 2008. A world overview — One-hundred-twentyseven years of research on toxic cyanobacteria — Where do we go from here?. In: Hudnell, H.K. (Ed.), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, AEMB vol. 619. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75865-7_4
  • 6. Carstensen, J., Andersen, J.H., Gustafsson, B.G., Conley, D.J., 2014. Deoxygenation of the Baltic Sea during the last century. P. Natl. Acad. Sci. USA 111, 5628-5633. https://doi.org/10.1073/ pnas.1323156111
  • 7. Conley, D.J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B.G., Hietanen, S., Kortekaas, M., Kuosa, H., Markus Meier, H.E., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N.N., Rosenberg, R., Savchuk, O.P., Slomp, C.P., Voss, M., Wulff, F., Zillén, L., 2009. Hypoxia-Related Processes in the Baltic Sea. Environ. Sci. Technol. 43, 3412-3420. https://doi.org/10.1021/es802762a
  • 8. Conley, D.J., Humborg, C., Rahm, L., Savchuk, O.P., Wulff, F., 2002. Hypoxia in the Baltic Sea and Basin-Scale Changes in Phosphorus Biogeochemistry. Environ. Sci. Technol. 36, 5315-5320. https://doi.org/10.1021/es025763w
  • 9. Donnelly, C., Andersson, J.C.M., Arheimer, B., 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrolog. Sci. J. 61, 255-273. https://doi.org/10.1080/02626667.2015.1027710
  • 10. Dybowski, D., Dzierzbicka-Głowacka, L., 2022. Analysis of the impact of nutrients deposited from the land side on the waters of Puck Lagoon (Gdańsk Basin, Southern Baltic): A model study. Oceanologia 65 (2), 386-397. https://doi.org/10.1016/j.oceano.2022.11.005
  • 11. Dybowski, D., Jakacki, J., Janecki, M., Nowicki, A., Rak, D., Dzierzbicka-Glowacka, L., 2019. High-Resolution Ecosystem Model of the Puck Bay (Southern Baltic Sea) - Hydrodynamic Component Evaluation. Water-SUI 11, 2057. https://doi.org/10.3390/w11102057
  • 12. Dybowski, D., Janecki, M., Nowicki, A., Dzierzbicka-Glowacka, L.A., 2020. Assessing the Impact of Chemical Loads from Agriculture Holdings on the Puck Bay Environment with the High-Resolution Ecosystem Model of the Puck Bay, Southern Baltic Sea. Water-SUI 12, 2068. https://doi.org/10.3390/w12072068
  • 13. Dzierzbicka-Glowacka, L., Dybowski, D., Janecki, M., Wojciechowska, E., Szymczycha, B., Potrykus, D., Nowicki, A., Szymkiewicz, A., Zima, P., Jaworska-Szulc, B., Pietrzak, S., Pazikowska-Sapota, G., Kalinowska, D., Nawrot, N., Wielgat, P., Dembska, G., Matej-Łukowicz, K., Szczepańska, K., Puszkarczuk, T., 2022. Modelling the impact of the agricultural holdings and land-use structure on the quality of inland and coastal waters with an innovative and interdisciplinary toolkit. Agr. Water Manage. 263, 107438. https://doi.org/10.1016/j.agwat.2021.107438
  • 14. Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A., 2013a. Activation of the operational eco hydrodynamic model (3D CEMBS) - the hydrodynamic part. Oceanologia 55 (3), 519- 541. https://doi.org/10.5697/oc.55-3.519
  • 15. Dzierzbicka-Głowacka, L., Janecki, M., Dybowski, D., Szymczycha, B., Obarska-Pempkowiak, H., Wojciechowska, E., Zima, P., Pietrzak, S., Pazikowska-Sapota, G., Jaworska-Szulc, B., Nowicki, A., Kłostowska, Z., Szymkiewicz, A., Galer-Tatarowicz, K.,Wichorowski, M., Białoskórski, M., Puszkarczuk, T., 2019. A New Approach for Investigating the Impact of Pesticides and Nutrient Flux from Agricultural Holdings and Land-Use Structures on Baltic Sea Coastal Waters. Pol. J. Environ. Stud. 28, 2531-2539. https://doi.org/10.15244/pjoes/92524
  • 16. Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A., Jakacki, J., 2013b. Activation of the operational eco hydrodynamic model (3D CEMBS) - the ecosystem module. Oceanologia 55 (3), 543- 572. https://doi.org/10.5697/oc.55-3.543
  • 17. Dzierzbicka-Głowacka, L., Nowicki, A., Janecki, M., Szymczycha, B., Piotrowski, P., Pieckiel, P., Łukasiewicz, G., 2018. Structure of the Find Fish Knowledge Transfer Platform. Fisheries & Aquatic Life 26, 193-197. https://doi.org/10.2478/aopf-2018-0021
  • 18. Gons, H.J., Rijkeboer, M., Ruddick, K.G., 2002. A chlorophyll retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters. J. Plankton Res. 24, 947-951. https://doi.org/10.1093/plankt/24.9.947
  • 19. Hansson, M., Viktorsson, L., Andersson, L., 2019. Oxygen Survey in the Baltic Sea 2019 - Extent of Anoxia and Hypoxia, 1960-2019 (No. 67),
  • 20. Report Oceanography. SMHI, Göteborg, Sweden. HELCOM, 2010. Ecosystem Health of the Baltic Sea 2003-2007: HELCOM Initial Holistic Assessment (No. 122). In: Balt. Sea Environ. Proc. Helsinki Commission, Helsinki, Finland.
  • 21. Janecki, M., Dybowski, D., Jakacki, J., Nowicki, A., Dzierzbicka-Glowacka, L., 2021. The Use of Satellite Data to Determine the Changes of Hydrodynamic Parameters in the Gulf of Gdańsk via EcoFish Model. Remote Sens. 13 (18), 3572. https://doi.org/10. 3390/rs13183572
  • 22. Janecki, M., Dybowski, D., Rak, D., Dzierzbicka-Glowacka, L., 2022. A New Method for Thermocline and Halocline Depth Determination at Shallow Seas. J. Phys. Oceanogr. 52, 2205-2218. https://doi.org/10.1175/JPO-D-22-0008.1
  • 23. Kalinowska, D., Wielgat, P., Kolerski, T., Zima, P., 2018. Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District. In: E3S Web Conf., 63, 00005. https://doi.org/10.1051/e3sconf/20186300005
  • 24. Kalinowska, D., Wielgat, P., Kolerski, T., Zima, P., 2020. Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water-SUI 12, 809. https://doi.org/10. 3390/w12030809
  • 25. Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P.O.J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H.E.M., Müller-Karulis, B., Naumann, M., Olesen, J.E., Savchuk, O., Schramm, A., Slomp, C.P., Sofiev, M., Sobek, A., Szymczycha, B., Undeman, E., 2022. Biogeochemical functioning of the Baltic Sea. Earth Syst. Dynam. 13, 633-685. https://doi.org/10.5194/esd-13-633-2022
  • 26. Majewski, A., 1972. Hydrological characteristics of estuarine waters at the Polish Coast. Państwowy Instytut Hydrologiczno-Meteorologiczny, 3-40.
  • 27. Malone, T.C., Newton, A., 2020. The Globalization of Cultural Eutrophication in the Coastal Ocean: Causes and Consequences. Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00670
  • 28. McCrackin, M.L., Muller-Karulis, B., Gustafsson, B.G., Howarth, R.W., Humborg, C., Svanbäck, A., Swaney, D.P., 2018. A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Global Biogeochem. Cy. 32, 1107-1122. https://doi.org/10.1029/2018GB005914
  • 29. Meier, H.E.M., Höglund, A., Eilola, K., Almroth-Rosell, E., 2017. Impact of accelerated future global mean sea level rise on hypoxia in the Baltic Sea. Clim. Dyn. 49, 163-172. https://doi.org/10.1007/s00382-016-3333-y
  • 30. Mohrholz, V., 2018. Major Baltic Inflow Statistics - Revised. Front. Mar. Sci. 5. https://doi.org/10.3389/fmars.2018.00384
  • 31. Moore, J.K., Doney, S.C., Kleypas, J.A., Glover, D.M., Fung, I.Y., 2001. An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. Pt. II 49, 403-462. https://doi.org/10.1016/S0967-0645(01)00108-4
  • 32. Mosharov, S.A., Mosharova, I.V., Dmitrieva, O.A., Semenova, A.S., Ulyanova, M.O., 2022. Seasonal Variability of Plankton Production Parameters as the Basis for the Formation of Organic Matter Flow in the Southeastern Part of the Baltic Sea. Water-SUI 14, 4099. https://doi.org/10.3390/w14244099
  • 33. O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J., 2012. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313-334. https://doi.org/10.1016/j.hal.2011.10.027
  • 34. Ostrowska, M., Ficek, D., Stoltmann, D., Stoń-Egiert, J., Zdun, A., Kowalewski, M., Zapadka, T., Majchrowski, R., Pawlik, M., Dera, J., 2022. Ten years of remote sensing and analyses of the Baltic Sea primary production (2010-2019). Remote Sensing Applications: Society and Environment 26, 100715. https://doi.org/10.1016/j.rsase.2022.100715
  • 35. Pastuszak, M., Bryhn, A.C., Håkanson, L., Stålnacke, P., Zalewski, M., Wodzinowski, T., 2018. Reduction of nutrient emission from Polish territory into the Baltic Sea (1988-2014) confronted with real environmental needs and international requirements. Oceanol. Hydrobiol. St 47, 140-166. https://doi.org/10.1515/ohs-2018-0015
  • 36. Paytan, A., McLaughlin, K., 2007. The Oceanic Phosphorus Cycle. Chem. Rev. 107, 563-576. https://doi.org/10.1021/cr0503613
  • 37. Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D.L., Soyeux, E., 2008. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens. Environ. 112, 4009-4019. https://doi.org/10.1016/j.rse.2008.06.002
  • 38. Reckermann, M., Omstedt, A., Soomere, T., Aigars, J., Akhtar, N., Bełdowska, M., Bełdowski, J., Cronin, T., Czub, M., Eero, M., Hyytiäinen, K.P., Jalkanen, J.-P., Kiessling, A., Kjellström, E., Kuliński, K., Larsén, X.G., McCrackin, M., Meier, H.E.M., Oberbeckmann, S., Parnell, K., Pons-Seres de Brauwer, C., Poska, A., Saarinen, J., Szymczycha, B., Undeman, E., Wörman, A., Zorita, E., 2022. Human impacts and their interactions in the Baltic Sea region. Earth Syst. Dynam. 13 (1), 1-80. https://doi.org/10.5194/esd-13-1-2022
  • 39. Sato, N., 2021. Are Cyanobacteria an Ancestor of Chloroplasts or Just One of the Gene Donors for Plants and Algae? Genes 12 (6), 823. https://doi.org/10.3390/genes12060823
  • 40. Sommer, U., Aberle, N., Lengfellner, K., Lewandowska, A., 2012. The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach. Mar. Biol. 159, 2479-2490. https://doi.org/10.1007/s00227-012-1897-6
  • 41. Szymczycha, B., Zaborska, A., Bełdowski, J., Kuliński, K., Beszczyńska-Möller, A., Kędra, M., Pempkowiak, J., 2019. Chapter 4 - The Baltic Sea. In: Sheppard, C. (Ed.), World Seas: An Environmental Evaluation. Acad. Press, 85-111. https://doi.org/10.1016/B978-0-12-805068-2.00005-X
  • 42. Tamminen, T., Andersen, T., 2007. Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Mar. Ecol. Prog. Ser. 340, 121-138. https://doi.org/10.3354/meps340121
  • 43. Tomczak, M.T., Szymanek, L., Pastuszak, M., Grygiel, W., Zalewski, M., Gromisz, S., Ameryk, A., Kownacka, J., Psuty, I., Kuzebski, E., Grzebielec, R., Margoński, P., 2016. Evaluation of Trends and Changes in the Gulf of Gdańsk Ecosystem - an Integrated Approach. Estuar. Coast. 39, 593-604. https://doi.org/10.1007/s12237-015-0026-4
  • 44. Verity, P.G., Smetacek, V., 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130, 277-293. https://doi.org/10.3354/meps130277
  • 45. Vitousek, P.M., Howarth, R.W., 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13, 87-115. https://doi.org/10.1007/BF00002772
  • 46. von Storch, H., 2023. Perceptions of an endangered Baltic Sea. Oceanologia 65 (1), 44-49. https://doi.org/10.1016/j.oceano.2021.08.005
  • 47. Voss, M., Liskow, I., Pastuszak, M., Rüß, D., Schulte, U., Dippner, J.W., 2005. Riverine discharge into a coastal bay: A stable isotope study in the Gulf of Gdańsk, Baltic Sea. J. Marine Syst. 57, 127-145. https://doi.org/10.1016/j.jmarsys.2005.04.002
  • 48. Wasmund, N., Andrushaitis, A., Łysiak-Pastuszak, E., Müller-Karulis, B., Nausch, G., Neumann, T., Ojaveer, H., Olenina, I., Postel, L., Witek, Z., 2001. Trophic Status of the South-Eastern Baltic Sea: A Comparison of Coastal and Open Areas. Estuar. Coast. Shelf. S. 53 (6), 849-864. https://doi.org/10.1006/ecss. 2001.0828
  • 49. Wielgat, P., Kalinowska, D., Szymkiewicz, A., Zima, P., Jaworska-Szulc, B., Wojciechowska, E., Nawrot, N., Matej-Lukowicz, K., Dzierzbicka-Glowacka, L.A., 2021. Towards a multi-basin SWAT model for the migration of nutrients and pesticides to Puck Bay (Southern Baltic Sea). PeerJ 9, e10938. https://doi.org/10. 7717/peerj.10938
  • 50. Witek, Z., Ochocki, S., Maciejowska, M., Pastuszak, M., Nakonieczny, J., Podgórska, B., Kownacka, J.M., Mackiewicz, T., Wrzesinska-Kwiecien, M., 1997. Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Mar. Ecol. Prog. Ser. 148, 169-186. https://doi.org/10.3354/meps148169
  • 51. Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M., Zapadka, T., 2011a. SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 1: Assumptions, scope and operating range. Oceanologia 53 (4), 897-924. https://doi.org/10.5697/oc.53-4.897
  • 52. Woźniak, B., Bradtke, K., Darecki, M., Dera, J., Dudzińska-Nowak, J., Dzierzbicka-Głowacka, L., Ficek, D., Furmańczyk, K., Kowalewski, M., Krężel, A., Majchrowski, R., Ostrowska, M., Paszkuta, M., Stoń-Egiert, J., Stramska, M., Zapadka, T., 2011b. SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results. Oceanologia 53 (4), 925-958. https://doi.org/10.5697/oc.53-4.925
  • 53. Zdun, A., Stoń-Egiert, J., Ficek, D., Ostrowska, M., 2021. Seasonal and spatial changes of primary production in the Baltic Sea (Europe) based on in situ measurements in the period of 1993-2018. Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.604532
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1a13145-ee8a-453b-8d26-c0d6a77a6760
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.