PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple HPLC method for simultaneous quantification of nicotine and cotinine levels in rat plasma after exposure to two different tobacco products

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Development and validation of a selective analytical method to accurately and precisely quantify nicotine and cotinine levels in rat's plasma after exposure to tobacco cigarettes and tobacco water-pipe. Methods: An easy HPLC-Photodiode-Array Detection (PDA) method was developed and validated for simultaneous determination of nicotine and cotinine levels in plasma of 15 rats (10 rats after tobacco products exposure and 5 control rats). Nicotine and cotinine were extracted in one step from plasma using acetonitrile and concentrated to lowest volume using nitrogen stream. Results: The developed method offered a rapid analysis time of 14 min with single step of analytes extraction from rat's plasma with recovery percentage range between 93 and 95% and excellent linearity with correlation factor more than 0.994 with analytical range between 50 and 1000 ng mL⁻¹ and LOD of 25 ng mL⁻¹ and 23 ng mL⁻¹ for nicotine and cotinine, respectively. The analysis of rat's plasma after 28 days of exposure to tobacco cigarettes and tobacco water-pipe revealed that the average concentrations of 376 ng mL⁻¹ for cotinine and 223 ng mL⁻¹ for nicotine were obtained after tobacco cigarettes exposure, and 220 ng mL⁻¹ for cotinine and 192 ng mL⁻¹ for nicotine after tobacco water-pipe exposure. Conclusion: Higher nicotine and cotinine levels were found in plasma after tobacco cigarettes exposure than water-pipe exposure which may have potential undesirable effects on passive smokers in both cases.
Słowa kluczowe
Rocznik
Strony
106--114
Opis fizyczny
Bibliogr. 55 poz., tab., rys., wykr.
Twórcy
  • Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
  • Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
  • Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
Bibliografia
  • 1. Mazumder, S.; Shia, W.; Bendik, P.B.; Achilihu, H.; Sosnoff, C.S.; Alexander, J.R.; Luo, Z.; Zhu, W.; Pine, B.N.; Feng, J. Nicotine exposure in the US population: total urinary nicotine biomarkers in DOI: 10.1556/1326.2022.01054 NHANES 2015–2016. Int. J. Environ. Res. Public Health 2022, 19, 3660.
  • 2. Taujenis, L.; Olšauskait_e, V.; Padarauskas, A. Determination of nicotine and three minor alkaloids in tobacco by hydrophilic interaction chromatography-tandem mass spectrometry. Acta Chromatographica 2015, 27, 373–85.
  • 3. Lu, F.; Yu, M.; Chen, C.; Liu, L.; Zhao, P.; Shen, B.; Sun, R. The emission of VOCs and CO from heated tobacco products, electronic cigarettes, and conventional cigarettes, and their health risk. Toxics 2021, 10, 8.
  • 4. Dimitriadis, K.; Narkiewicz, K.; Leontsinis, I.; Konstantinidis, D.; Mihas, C.; Andrikou, I.; Thomopoulos, C.; Tousoulis, D.; Tsioufis, K. Acute effects of electronic and tobacco cigarette smoking on sympathetic nerve activity and blood pressure in humans. Int. J. Environ. Res. Public Health 2022, 19, 3237.
  • 5. Hemmo, S.I.; Naser, A.Y.; Alwafi, H.; Mansour, M.M.; Alanazi, A.F.; Jalal, Z.; Alsairafi, Z.K.; Paudyal, V.; Alomari, E.; Al-Momani, H.; Al Bawab, A.Q. Hospital admissions due to ischemic heart diseases and prescriptions of cardiovascular diseases medications in England and Wales in the past two decades. Int. J. Environ. Res. Public Health 2021, 18, 7041.
  • 6. Citu, I.M.; Citu, C.; Gorun, F.; Neamtu, R.; Motoc, A.; Burlea, B.; Rosca, O.; Bratosin, F.; Hosin, S.; Manolescu, D. Using the NYHA classification as forecasting tool for hospital readmission and mortality in heart failure patients with COVID-19. J. Clin. Med. 2022, 11, 1382.
  • 7. W.H. Organization. WHO Global Report on Trends in Prevalence of Tobacco Smoking 2000-2025; World Health Organization, 2018.
  • 8. W.H. Organisation. Empowering the Government of Jordan to Strengthen Tobacco Control, 2020.
  • 9. Nakkash, R.; Khader, Y.; Chalak, A.; Abla, R.; Abu-Rmeileh, N.M.; Mostafa, A.; Jawad, M.; Lee, J.-H.; Salloum, R.G. Prevalence of cigarette and waterpipe tobacco smoking among adults in three Eastern Mediterranean countries: a cross-sectional household survey. BMJ open 2022, 12, e055201.
  • 10. Shihadeh, A. Investigation of mainstream smoke aerosol of the argileh water pipe. Food Chem. Toxicol. 2003, 41, 143–52.
  • 11. Burki, T.K. Tobacco control in Jordan. Lancet Respir. Med. 2019, 7, 386.
  • 12. Aboaziza, E.; Eissenberg, T. Waterpipe tobacco smoking: what is the evidence that it supports nicotine/tobacco dependence? Tob. Control 2015, 24, i44–53.
  • 13. Mohd Radzi, N.A.; Saub, R.; Mohd Yusof, Z.Y.; Dahlui, M.; Sujak, S.L. Nicotine dependence among adolescents single and dual cigarette users. Children 2021, 8, 144.
  • 14. Lkhagvadorj, K.; Zeng, Z.; Meyer, K.F.; Verweij, L.P.; Kooistra, W.; Reinders-Luinge, M.; Dijkhuizen, H.W.; de Graaf, I.A.; Plösch, T.; Hylkema, M.N. Postnatal smoke exposure further increases the hepatic nicotine metabolism in prenatally smoke exposed male offspring and is linked with aberrant Cyp2a5 methylation. Int. J. Mol. Sci. 2020, 22, 164.
  • 15. Hukkanen, J.; Jacob, P.; Benowitz, N.L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 2005, 57, 79–115.
  • 16. Squillacioti, G.; Bellisario, V.; Grignani, E.; Mengozzi, G.; Bardaglio, G.; Dalmasso, P.; Bono, R. The asti study: the induction of oxidative stress in a population of children according to their body composition and passive tobacco smoking exposure. Int. J. Environ. Res. Public Health 2019, 16, 490.
  • 17. Benowitz, N.L. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol. Rev. 1996, 18, 188–204.
  • 18. Park, S.; Lee, D.-H.; Park, J.-G.; Lee, Y.T.; Chung, J. A sensitive enzyme immunoassay for measuring cotinine in passive smokers. Clin. Chim. Acta 2010, 411, 1238–42.
  • 19. Dhar, P. Measuring tobacco smoke exposure: quantifying nicotine/cotinine concentration in biological samples by colorimetry, chromatography and immunoassay methods. J. Pharm. Biomed. Anal. 2004, 35, 155–68.
  • 20. Mamián-López, M.B.; Poppi, R.J. Standard addition method applied to the urinary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution. Anal. Chim. Acta 2013, 760, 53–9.
  • 21. Alhusban, A.A.; Breadmore, M.C.; Gueven, N.; Guijt, R.M. Time-resolved pharmacological studies using automated, on-line monitoring of five parallel suspension cultures. Sci. Rep. 2017, 7, 1–9.
  • 22. Alhusban, A.A.; Hamadneh, L.A.; Albustanji, S.; Shallan, A.I. Lactate and pyruvate levels correlation with lactate dehydrogenase gene expression and glucose consumption in Tamoxifen-resistant MCF-7 cells using capillary electrophoresis with contactless conductivity detection (CE-C4D). Electrophoresis 2021.
  • 23. Hamadneh, L.; Al-Lakkis, L.; Alhusban, A.A.; Tarawneh, S.; Abu-Irmaileh, B.; Albustanji, S.; Al-Bawab, A.Q. Changes in lactate production, lactate dehydrogenase genes expression and DNA methylation in response to tamoxifen resistance development in MCF-7 cell line. Genes 2021, 12, 777.
  • 24. Baidoo, E.E.; Clench, M.R.; Smith, R.F.; Tetler, L.W. Determination of nicotine and its metabolites in urine by solid-phase extraction and sample stacking capillary electrophoresis-mass spectrometry. J. Chromatogr. B 2003, 796, 303–13.
  • 25. Sun, J.; Du, H.; You, T. Determination of nicotine and its metabolite cotinine in urine and cigarette samples by capillary electrophoresis coupled with electrochemiluminescence. Electrophoresis 2011, 32, 2148–54.
  • 26. Nuchtavorn, N.; Ryvolova, M.; Bek, F.; Macka, M.; Phechkrajang, C.; Suntornsuk, L. Potential of capillary electrophoresis (CE) and chip-CE with dual detection (capacitively-coupled contactless conductivity detection (C4D) and fluorescence Detection) for monitoring of nicotine and cotinine derivatization. Anal. Sci. 2013, 29, 339–44.
  • 27. Shin, H.-S.; Kim, J.-G.; Shin, Y.-J.; Jee, S.H. Sensitive and simple method for the determination of nicotine and cotinine in human urine, plasma and saliva by gas chromatography–mass spectrometry. J. Chromatogr. B 2002, 769, 177–83.
  • 28. Jacob, P., III; Wu, S.; Yu, L.; Benowitz, N.L. Simultaneous determination of mecamylamine, nicotine, and cotinine in plasma by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2000, 23, 653–61.
  • 29. Curvall, M.; Kazemi-Vala, E.; Enzell, C.R. Simultaneous determination of nicotine and cotinine in plasma using capillary column gas chromatography with nitrogen-sensitive detection. J. Chromatogr. B: Biomed. Sci. Appl. 1982, 232, 283–93.
  • 30. Deutsch, J.; Hegedus, L.; Greig, N.H.; Rapoport, S.I.; Soncrant, T.T. Electron-impact and chemical ionization detection of nicotine and cotinine by gas chromatography—mass spectrometry in rat plasma and brain. J. Chromatogr. B: Biomed. Sci. Appl. 1992, 579, 93–8.
  • 31. Cognard, E.; Staub, C. Determination of Nicotine and its Major Metabolite Cotinine in Plasma or Serum by Gas Chromatography-Mass Spectrometry Using Ion-Trap Detection, 2003.
  • 32. Kogan, M.; Verebey, K.; Jaffee, J.; Mule, S. Simultaneous determination of nicotine and cotinine in human plasma by nitrogen detection gas-liquid chromatography. J. Forensic Sci. 1981, 26, 6–11.
  • 33. Hammes, W.; Bittner, J.; Müller, R. Simultaneous determination of nicotine and cotinine in plasma by capillary gas liquid chromatography with nitrogen-sensitive detection. Fresenius’ Z. für analytische Chem. 1989, 333, 745–6.
  • 34. Lee, S.; Nath, C.E.; Balzer, B.W.; Lewis, C.R.; Trahair, T.N.; Anazodo, A.C.; Shaw, P.J. An HPLC–PDA method for determination of alectinib concentrations in the plasma of an adolescent. Acta Chromatographica 2020, 32, 166–9.
  • 35. Kim, I.; Huestis, M.A. A validated method for the determination of nicotine, cotinine, trans-30-hydroxycotinine, and norcotinine in human plasma using solid-phase extraction and liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. J. Mass Spectrom. 2006, 41, 815–21.
  • 36. Jin, S.; Pang, W.; Zhao, L.; Zhao, Z.; Mei, S. Review of HPLC–MS methods for the analysis of nicotine and its active metabolite cotinine in various biological matrices. Biomed. Chromatogr. 2022, e5351.
  • 37. Shakleya, D.M.; Huestis, M.A. Simultaneous and sensitive measurement of nicotine, cotinine, trans-3’-hydroxycotinine and nor-cotinine in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2009, 877, 3537–42.
  • 38. Stolker, A.L.A.; Niesing, W.; Hogendoorn, E.A.; Rambali, A.B.; Vleeming, W. Determination of nicotine and cotinine in rat plasma by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2003, 1020, 35–43.
  • 39. Xu, A.S.; Peng, L.L.; Havel, J.A.; Petersen, M.E.; Fiene, J.A.; Hulse, J.D. Determination of nicotine and cotinine in human plasma by liquid chromatography-tandem mass spectrometry with atmospheric-pressure chemical ionization interface. J. Chromatogr. B: Biomed. Sci. Appl. 1996, 682, 249–57.
  • 40. Alhusban, A.A.; Albustanji, S.; Hamadneh, L.A.; Shallan, A.I. High performance liquid chromatography–tandem mass spectrometry method for correlating the metabolic changes of lactate, pyruvate and L-glutamine with induced tamoxifen resistant MCF-7 cell line potential molecular changes. Molecules 2021, 26, 4824.
  • 41. Alhusban, A.A.; Ata, S.A. Simple HPLC method for rapid quantification of nicotine content in e-cigarettes liquids. Acta Chromatographica 2021, 33, 302–7.
  • 42. Karvaly, G.B.; Tekes, K.; Szimrók, Z.; FÜrÉsz, J.; KuČa, K.; Kalász, H. A fieldable, high-throughput, cost-efficient high performance liquid chromatography-ultraviolet absorption detection (HPLC-UV) method for the quantitation of bispyridinium quaternary aldoxime cholinesterase reactivators in blood. Acta Chromatographica 2021, 33, 134–44.
  • 43. Baj, J.; Flieger, W.; Przygodzka, D.; Buszewicz, G.; Teresiński, G.; Pizoń, M.; Maciejewski, R.; Flieger, J. Application of HPLC-QQQ-MS/MS and new RP-HPLC-DAD system utilizing the chaotropic effect for determination of nicotine and its major metabolites cotinine, and trans-3’-hydroxycotinine in human plasma samples. Molecules 2022, 27, 682.
  • 44. Shaik, F.B.; Nagajothi, G.; Swarnalatha, K.; Kumar, C.S.; Maddu, N. Quantification of nicotine and cotinine in plasma, saliva, and urine by HPLC method in chewing tobacco users. Asian Pac. J. Cancer Prev: APJCP 2019, 20, 3617.
  • 45. Papadoyannis, I.; Samanidou, V.; Stefanidou, P. Clinical assay of nicotine and its metabolite, cotinine, in body fluids by HPLC following solid phase extraction. J. liquid Chromatogr. Relat. Tech. 2002, 25, 2315–35.
  • 46. Dawson, R.; Messina, S.; Stokes, C.; Salyani, S.; Alcalay, N.; De Fiebre, N.; De Fiebre, C. Solid-phase extraction and HPLC assay of nicotine and cotinine in plasma and brain. Toxicol. Mech. Methods 2002, 12, 45–58.
  • 47. Massadeh, A.M.; Gharaibeh, A.A.; Omari, K.W. A single-step extraction method for the determination of nicotine and cotinine in Jordanian smokers’ blood and urine samples by RP-HPLC and GC-MS. J. Chromatogr. Sci. 2009, 47, 170–7.
  • 48. Abu-Qare, A.W.; Abou-Donia, M.B. Quantification of nicotine, chlorpyrifos and their metabolites in rat plasma and urine using high-performance liquid chromatography. J. Chromatogr. B: Biomed. Sci. Appl. 2001, 757, 295–300.
  • 49. Abu-Qare, A.W.; Abou-Donia, M.B. High-performance liquid chromatographic determination of pyridostigmine bromide, nicotine, and their metabolites in rat plasma and urine. J. Chromatogr. Sci. 2001, 39, 287–92.
  • 50. Nakajima, M.; Yamamoto, T.; Kuroiwa, Y.; Yokoi, T. Improved highly sensitive method for determination of nicotine and cotinine in human plasma by high-performance liquid chromatography. J. Chromatogr. B: Biomed. Sci. Appl. 2000, 742, 211–5.
  • 51. Sioufi, A.; Parisot, C.; Sandrenan, N.; Dubois, J. High performance liquid chromatographic determination of nicotine and cotinine in plasma and nicotine and cotinine, simultaneously, in urine. Methods Find. Exp. Clin. Pharmacol. 1989, 11, 179–85.
  • 52. Hariharan, M.; VanNoord, T.; Greden, J.F. A high-performance liquid-chromatographic method for routine simultaneous determination of nicotine and cotinine in plasma. Clin. Chem. 1988, 34, 724–9.
  • 53. Emanuel, E.J.; Grady, C.C.; Crouch, R.A.; Lie, R.K.; Miller, F.G.; Wendler, D.D. The Oxford Textbook of Clinical Research Ethics; Oxford University Press, 2008.
  • 54. Sharma, A.; Fish, B.L.; Moulder, J.E.; Medhora, M.; Baker, J.E.; Mader, M.; Cohen, E.P. Safety and blood sample volume and quality of a refined retro-orbital bleeding technique in rats using a lateral approach. Lab Animal 2014, 43, 63–6.
  • 55. FDA, Food and Drug Administration. Guidance for Industry: Bioanalytical Method Validation, 2001. https://www.fda.gov/downloads/drugs/guidances/ucm070107.Pdf (accessed Apr 12, 2020).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e19c5d97-3801-4aa2-9e42-9c2c01465836
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.