Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Load and latency balancing in edge-cloud architecture for mobile computing
Konferencja
Konferencja Radiokomunikacji i Teleinformatyki (11-13.09.2024 ; Poznań, Polska)
Języki publikacji
Abstrakty
Obliczenia mobilne z użyciem chmur brzegowych są jedną z kluczowych technologii sieci komórkowych. Odpowiednie rozmieszczenie chmur brzegowych w sposób istotny wpływa na zrównoważenie ich obciążenia oraz zmniejszenie czasu opóźnienia transmisji. W artykule przedstawiono metodę, która może w istotny sposób poprawić efektywność działania sieci komórkowej. Eksperyment symulacyjny potwierdza, że zastosowanie tej metody zapewnia wymagania stawiane przez użytkowników.
Mobile computing using edge clouds is one of the key technologies for cellular networks. The appropriate placement of edge clouds has a significant impact balancing their load and reducing transmission delay time. The paper presents a method that can significantly improve efficiency of the mobile network. The simulation experiment confirms that the application this method ensures the requirements set by users.
Wydawca
Rocznik
Tom
Strony
414--418
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- Wydział Matematyki i Informatyki, Uniwersytet Jagielloński, Kraków
Bibliografia
- [1] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration, IEEE Comm. Surveys and Tutorials, vol. 19, no. 3, pp. 1657 - 1681, 2017.
- [2] P. Mach, Z. Becvar, Mobile Edge Computing: A Survey on Architecture and Computation Offloading, 2017, [https://arxiv.org/abs/1702.05309]
- [3] S. Rizvi, S., J. Ryoo, J., Y. Liu, Y.,D. Zazworsky, D.,A. Cappeta, A centralized trust model approach for cloud computing. In IEEE 2014 23rd Wireless and Optical Communication Conference (WOCC), pp. 1 - 6, 2014.
- [4] M. Chiang, Fog Networking: An Overview on Research Opportunities, Princeton University, 2015, [https://www.princeton.edu/ chiangm/FogResearchOverview.pdf]
- [5] Y. Chan Hu i in., Mobile Edge Computing. A Key Technology Towards 5G, ETSI White Paper No. 11, 2015.
- [6] M. Patel i in., Mobile Edge Computing (MEC), Introductory Technical White Paper, ostatnia aktualizacja 2016.
- [7] F. Wang, J. Xu, X. Wang, S. Cui, Joint Offloading and Computing Optimization in Wireless Powered Mobile-Edge Computing Systems, in IEEE Trans. on Wireless Comm., vol. 17, no. 3, pp. 1784 - 1797, 2018.
- [8] G. Wang, F. Xu, C. Zhao, QoS-enabled resource allocation algorithm in internet of vehicles with mobile edge computing. IET Comm., vol. 14 no. 14, 2326 - 2333, 2020.
- [9] T. Zhang T, W. Chen, F. Yang, Data offloading in mobile edge computing: a coalitional game based pricing approach. IEEE Access 2018, vol. 6, pp. 2760 - 2767, 2018.
- [10] W. Binwei, J. Zeng, Iu ge, Y. Tang, X. Su, Game- Theoretical Approach for Energy-Efficient Resource Allocation in MEC Network, 2019 IEEE Int. Conf. on Comm. (ICC), 2019.
- [11] D. Bhatta, L. Mashayekhy, Generalized cost-aware cloudlet placement for vehicular edge computing systems, in: 2019 IEEE International Conference on Cloud Computing Technology and Science, Cloud-Com, pp. 159 - 166, 2019.
- [12] N. Mohan, A. Zavodovski, P. Zhou, J. Kangasharju, Anveshak: Placing edge servers in the wild, in: Proceedings of the 2018 Workshop on Mobile Edge Communications, ACM, United States, pp. 7 - 12, 2018.
- [13] L. Ma, J. Wu, L. Chen, Z. Liu, Fast algorithms for capacitated cloudlet placements, in: IEEE 21st International Conference on Computer Supported Cooperative Work in Design, pp. 439 - 444, 2017.
- [14] J. Liu, U. Paul, S. Troia, O. Falowo, G. Maier, K-means based spatial base station clustering for facility location problem in 5G, in: J. Lewis, Z. Ndlela (Eds.), Proceedings of Southern Africa Telecommunication Networks and Applications Conference, SATNAC, pp. 406–409, 2018.
- [15] F. Zeng, Y. Ren, X. Deng, W. Li, Cost-effective edge server placement in wireless metropolitan area networks, Sensors 19, vol.1, 2018.
- [16] T. Han, N. Ansari, A traffic load balancing framework for software-defined radio access networks powered by hybrid energy sources, IEEE/ACM Trans. on Networking, vol. 24, no. 2, pp. 1038 - 1051, 2016.
- [17] N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, User association in hetnets: Impact of traffic differentiation and backhaul limitations, IEEE/ACM Trans. on Networking, vol. 25, no. 6, pp. 3396 - 3410, 2017.
- [18] L. Kleinrock, Queueing Systems. Computer Applications, vol. 2, John Wiley and Sons, 1976.
- [19] W. Spendley, G.R. Hext, F.R. Himsworth, Sequential application for simplex designs in optimisation and evolutionary operation. Technometrics 4, pp. 441–461, 1962.
- [20] M. J.D. Powell, An efficient method for finding the minimum of a function of several variables without calculation derivatives, The Computer Journal, vol. 7, pp. 155 - 162, 1964.
- [21] J. A. Nelder, R. Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e194b783-c72e-4799-b82b-a15c375b5679