PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing nano grid connectivity through the AI-based cloud computing platform and integrating recommender systems with deep learning architectures for link prediction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cloud computing has become ubiquitous in modern society, facilitating various applications ranging from essential services to online entertainment. To ensure that quality of service (QoS) standards are met, cloud frameworks must be capable of adapting to the changing demands of users, reflecting the societal trend of collaboration and dependence on automated processing systems. This research introduces an innovative approach for link prediction and user cloud recommendation, leveraging nano-grid applications and deep learning techniques within a cloud computing framework. Heuristic graph convolutional networks predict data transmission links in cloud networks. The trust-based hybrid decision matrix algorithm is then employed to schedule links based on user recommendations. The proposed model and several baselines are evaluated using real-world networks and synthetic data sets. The experimental analysis includes QoS, mean average precision, root mean square error, precision, normalized square error, and sensitivity metrics. The proposed technique achieves QoS of 73%, mean average precision of 59%, root mean square error of 73%, precision of 76%, normalized square error of 86%, and sensitivity of 93%. The findings suggest that integrating nano-grid and deep learning techniques can effectively enhance the QoS of cloud computing frameworks.
Rocznik
Strony
art. no. e150113
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of ECE, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
  • Department of ECE, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
  • Azista Industries Pvt Ltd, Advanced Pixel Research Intelligence Lab, Hyderabad, Telangana, India
Bibliografia
  • [1] N.N. Daud, S.H. Ab Hamid, M. Saadoon, C. Seri, Z.H.A. Hasan and N.B. Anuar, “Self-ConFig.d Framework for scalable link prediction in twitter: Towards autonomous spark framework,” Knowledge-Based Syst., vol. 255, p. 109713, 2022.
  • [2] J. Zheng et al., “Analysis of thermal characteristics with multiphysicsc oupling for the feed system of a precision CNC machine tool,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148941, 2024, doi: 10.24425/bpasts.2024.148941.
  • [3] M. Bohlooly Fotovat and T. Kubiak, “Non-bifurcation behavior of laminated composite plates under in-plane compression,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148874, 2024, doi: 10.24425/bpasts.2024.148874.
  • [4] C. Cao, W. Dong, W. Zhang and Y. Gao, “WiEdge: Edge Computing for Audio Sensing Applications With Accurate Wireless Link Prediction,” IEEE Internet Things J., vol. 10, no. 5, pp. 3982–3994, 2023, doi: 10.1109/JIOT.2022.3173668.
  • [5] J. Wang et al., “Diagnosis of inter-turn short circuit fault in IPMSMs based on the combined use of greedy tracking and random forest,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148943, 2024, doi: 10.24425/bpasts.2024.148943.
  • [6] P. Steinbach, F. Gernhardt, M. Tanveer, S. Schmerler, and S. Starke, “Machine learning state-of-the-art with uncertainties,” arXiv:2204.05173, 2022, doi: 10.48550/arXiv.2204.05173.
  • [7] Y. Qi, X. Zhang, Z. Hu, B. Xiang, R. Zhang, and S. Fang, “Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction,” Scientometrics, vol. 127, no. 9, pp. 5519–5550, 2022.
  • [8] L. Yang, X. Jiang, Y. Ji, H. Wang, A. Abraham, and H. Liu, “Gated graph convolutional network based on spatio-temporal semi-variogram for link prediction in dynamic complex network,” Neurocomputing, vol. 505, pp. 289–303, 2022.
  • [9] S. Bates, T. Hastie, and R. Tibshirani, “Cross-Validation: What Does It Estimate and How Well Does It Do It?,” J. Am. Stat. Assoc., pp. 1–12, doi: 10.1080/01621459.2023.2197686.
  • [10] M. Nie, D. Chen, and D. Wang, “Graph Embedding Method Based on Biased Walking for Link Prediction,” Mathematics, vol. 10, no. 20, p. 3778, 2022, doi: 10.3390/math10203778.
  • [11] S. Raschka, “Model evaluation, model selection, and algorithm selection in machine learning,” arXiv:1811.12808, 2018.
  • [12] S. Noel and V. Swarup, “Dependency-Based Link Prediction for Learning Microsegmentation Policy,” in Information and Communications Security: 24th International Conference, ICICS 2022, Canterbury, UK, 2022, pp. 569–588.
  • [13] G. Xu, X. Zhou, J. Peng, and C. Dong, “SCL-WTNS: A new link prediction algorithm based on strength of community link and weighted two-level neighborhood similarity,” Int. J. Mod. Phys. B, vol. 36, no. 20, p. 2250120, 2022.
  • [14] F. Müller, “Link and edge weight prediction in air transport networks. An RNN approach,” Physica A, vol. 613, p. 128490, 2023.
  • [15] A. Elsheikh, A.S. Ibrahim, and M.H. Ismail, “Sequence-tosequence learning for link-scheduling in D2D communication networks,” J. Netw. Comput. Appl., vol. 212, p. 103567, 2023.
  • [16] N.N. Daud, S.H.A. Hamid, C. Seri, M. Saadoon, and N.B. Anuar, “Scalable link prediction in Twitter using self-configured framework,” arXiv:2208.09798, 2022.
  • [17] Y. Xiu, K. Cao, X. Ren, B. Chen, and W.K.V. Chan, “Self-Similar Growth and Synergistic Link Prediction in Technology-Convergence Networks: The Case of Intelligent Transportation Systems,” Fractal Fract., vol. 7, no. 2, p. 109, 2023.
  • [18] P. Sathre, A. Gondhalekar, and W.C. Feng, “Edge-Connected Jaccard Similarity for Graph Link Prediction on FPGA,” in 2022 IEEE High Performance Extreme Computing Conference (HPEC), 2022, pp. 1–10.
  • [19] W. Quan, M. Liu, N. Cheng, X. Zhang, D. Gao, and H. Zhang, “Cybertwin-driven DRL-based adaptive transmission scheduling for software defined vehicular networks,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 4607–4619, 2022.
  • [20] K.W. Cho, M. Cominelli, F. Gringoli, J. Widmer, and K. Jamieson, “Cross-Link Channel Prediction for Massive IoT Networks,” arXiv:2212.07663, 2022.
  • [21] C. Xing, Y. Li, C. Chen, F. Li, Z. Zeng, and X. Zou, “Determinantal point process-based new radio unlicensed link scheduling for multi-access edge computing.” World Wide Web, vol. 25, no. 5, pp. 2215–2239, 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e194971a-b9c9-4de4-81f9-a23847493598
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.