PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of annealing temperature on the optical properties of ZnO nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, ZnO films were prepared by drop casting technique. The films were deposited on quartz substrates under different annealing time (15,30,45 and 60 min.) at a constant temperature (800 °C). The optical properties were achieved by measuring the absorbance and transmittance spectra in the wavelength range (200-900) nm. It was found that the absorbance decreases while transmission increases as the annealing time increases, while the reflectance decreases as the annealing time increases. The optical measurements indicate the kind of transition which was a direct allowed with an average band gap energies lie between 3.3 eV and 3.54 eV with the change of annealing time.
Rocznik
Tom
Strony
37--47
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • School of Applied Sciences, University of Technology, Baghdad, Iraq
autor
  • Department of Physics, College of Education, University of Al-Mustansiriyah, Baghdad, Iraq
autor
  • Department of Physics, College of Education, University of Al-Mustansiriyah, Baghdad, Iraq
Bibliografia
  • [1] Zhong Lin Wang, Journal of Physics: Condensed Matter. 16 (2004) 829.
  • [2] Zhiyong Fan, Jia G. Lu, Journal of Nanoscience and Nanotechnology 5(10) (2005) 1561.
  • [3] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv. Mater. 10(1) (2009).
  • [4] Dapeng Wu, Zhengyu Bai, Kai Jiang, Materials Letters 63 (2009) 1057.
  • [5] Chen Z., Z. Shan, S. Li, C. B. Liang, S. X. Mao, J. Cryst. Growth. 265 (2004) 482.
  • [6] Sekar A., S. H. Kim, A. Umar, Y. B. Hahn, J. Cryst. Growth. 277 (2005) 471.
  • [7] B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba, K. Haga, Appl. Phys. Lett. 84 (2004) 586.
  • [8] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78 (2001) 407.
  • [9] Y. J. Xing, et al., Appl. Phys. Lett. 83 (2003) 1689.
  • [10] W. I. Park, G.-C. Yi, M. Y. Kim, S. J. Pennycook, Adv. Mater. 15 (2003) 526.
  • [11] L. Guo, S. Yang, C. Yang, P. Yu, Appl. Phys. Lett. 76 (2000) 2901.
  • [12] K. Haga, F. Katahira, H. Watanabe, Thin Solid Films 343 (1999) 145.
  • [13] K. Ogata, T. Kawanishi, K. Maejimaz, K. Sakurai, S. Fujita, Jpn. J. Appl. Phys. 7A (2001) 240.
  • [14] S. A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84 (1998) 2287.
  • [15] W. Li, et al., Surf. Coat.Technol. 346 (2000) 128.
  • [16] Y. Sun, G. M. Fuge, M. N. R. Ashfold, Chem. Phys. Lett. 396 (2004) 21.
  • [17] W. Chiou,W.Wu, J. Ting, Diamond Relat. Mater. 12 (2003) 1841.
  • [18] Y. Li, G. W. Meng, L. D. Zhang, Appl. Phys. Lett. 76 (2000) 2011.
  • [19] S. Y. Li, C. Y. Lee, T. Y. Tseng, J. Cryst. Growth 247 (2003) 357.
  • [20] Al Asmar R., Zaouk D., Bahouth Ph., Podleki J., Foucaran A., Microelectronic Engineering 83 (2006) 393e8.
  • [21] C. Klingshirn "Semiconductor optics" Second Edition, new York (2005).
  • [22] Caglar M., Ilican S., Caglar Y., Yakuphanoglu F., Applied Surface Science 255 (2009) 4491e6.
  • [23] C. F. Klingshirn, Semiconductor Optics, Springer Verlag Berlin (1997).
  • [24] Nadir Fadhil Habubi, Sami Salmann Chiad, Saad Farhan Oboudi, Ziad Abdulahad Toma, International Letters of Chemistry, Physics and Astronomy 4 (2013) 1-8.
  • [25] Saad F. Oboudi, Nadir F. Habubi, Ghuson H. Mohamed, Sami S. Chiad, International Letters of Chemistry, Physics and Astronomy 8(1) (2013) 78-86.
  • [26] J. A. Najim, J. M. Rozaiq, International Letters of Chemistry, Physics and Astronomy 10(2) (2013) 137-150.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e192ce9f-72f7-472a-8338-e0514e470c06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.