Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Advanced silica/lignosulfonate composites were obtained using magnesium lignosulfonate and silica precipitated in a polar medium. For comparative purposes analogous synthesis was performed using commercial silica Aerosil®200. Lignosulfonates are waste products of paper industry and their application in new multifunctional materials is of great economic interest. The composites obtained were subjected to thorough characterization by determination of their physicochemical, dispersive-morphological and electrokinetic properties. Their particle size distribution was measured, SEM images were taken, FT-IR analysis and colorimetric study were made, thermal and electrokinetic stabilities and parameters of porous structure were also determined. The results can be of interest in further application studies.
Czasopismo
Rocznik
Tom
Strony
103--109
Opis fizyczny
Bibliogr. 27 poz., tab., wykr., wz., zdj.
Twórcy
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland
autor
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland
Bibliografia
- 1. Jesionowski, T. & Krysztafkiewicz, A. (2001). Influence of silane coupling agents on surface properties of precipitated silicas, Appl. Surf. Sci. 172, 18-32. DOI: 10.1016/S0169- -4332(00)00828-X.
- 2. Jesionowski, T. (2002). Effect of surfactants on the size and morphology of the silica particles prepared by an emulsion technique, J. Mater. Sci. 37, 5275-5281. DOI: 10.1023/A:1021064705690.
- 3. Jesionowski, T. (2009). Preparation of spherical silica in emulsion system using the co-precipitation technique, Mater. Chem. Phys. 113, 839-849. DOI: 10.1016/j.matchemphys. 2008.08.067.
- 4. Stöber, W., Fink, A. & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range, J. ColloidInterface Sci. 26, 62-69. DOI: 10.1016/0021-9797(68)90272-5.
- 5. Ibrahim, I.A.M., Zikry, A.A.F. & Sharaf, M.A. (2010). Preparation of spherical silica nanoparticles: Stöber silica, J. Am. Sci. 6, 985-989. DOI: 10.1023/A:1026056716397.
- 6. Ouyang, X., Qiu, X. & Chen, P. (2006). Physicochemical characterization of calcium lignosulfonate - a potentially useful water reducer, Colloids Surf. A: Physicochem. Eng. Aspects 282-283, 489-497. DOI: 10.1016/j.colsurfa.2005.12.020.
- 7. Telysheva, G., Dizhbite, T., Paegle, E., Shapatin, A. & Demidov, I. (2001). Surface-active properties of hydrophobized derivatives of lignosulfonates: effect of structure of organosilicon modifier, J. Appl. Polym. Sci. 82, 1013-1020. DOI: 10.1002/app.1935.
- 8. Alonso, M.V., Oliet, M., Rodriguez, F., Astarloa, G. & Echeverria, J.M. (2004). Use of a methylolated softwood ammonium lignosulfonate as partial substitute of phenol in resol resins manufacture, J. Appl. Polym. Sci. 94, 643-650. DOI: 10.1002/app.20887.
- 9. Chiwetelu, C.I., Hornof, V., Neale, G.H. & George, A.E. (1994). Use of mixed surfactants to improve the transient interfacial tension behavior of heavy oil/alkaline systems, Can. J. Chem. Eng. 72, 534-540. DOI: 10.1002/cjce.5450720320.
- 10. Ansari, A., Pawlik, M. (2007). Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part I. Adsorption studies, Miner. Eng. 20, 600-608. DOI: 10.1016/j. mineng.2006.12.007.
- 11. Gargulak, J.D. & Lebo, S.E. (2000). Commercial use of lignin-based materials, ACS Symp. Ser. 742, 304-320. DOI: 10.1021/bk-2000-0742.ch015.
- 12. Klapiszewski, Ł., Mądrawska, M. & Jesionowski, T. (2012). Preparation and characterisation of hydrated silica/ lignin biocomposites, Physicochem. Probl. Miner. Process. 48, 463-473. DOI: 10.5277/ppmp120212.
- 13. Klapiszewski, Ł., Nowacka, M., Szwarc-Rzepka, K. & Jesionowski, T. (2013). Advanced biocomposites based on silica and lignin precursors, Physicochem. Probl. Miner. Process. 49, 497-509. DOI: 10.5277/ppmp130211.
- 14. Klapiszewski, Ł., Nowacka, M., Milczarek, G. & Jesionowski, T. (2013). Physicochemical and electrokinetic properties of silica/lignin biocomposites, Carbohydrate Polym. 94, 345-355. DOI: 10.1016/j.carbpol.2013.01.058.
- 15. Prasetyo, E.N., Kudanga, T. & Fischer, R. (2012). Enzymatic synthesis of lignin-siloxane hybrid functional polymers, Biotechnol. J. 7, 284-292. DOI: 10.1002/biot.201100106.
- 16. Qu, Y., Tian, Y. & Zou, B. (2010). A novel mesoporous lignin/silica hybrid from rice husk produced by a sol-gel method, Bioresource Technol. 101, 8402-8405. DOI: 10.1016/j.biortech.2010.05.067.
- 17. Mishra, S.B., Mishra, A.K. & Krause, R.W. (2009). Growth of silicon carbide nanorods from the hybrid of lignin and polysiloxane using sol-gel process and polymer blend technique, Mater. Lett. 63, 2449-2451. DOI: 10.1016/j.matlet.2009.08.029.
- 18. Gregorová, A., Košikovă, B. & Moravčik, R. (2006). Stabilization effect of lignin in natural rubber-based composites, Polym. Degrad. Stabil. 91, 229-233. DOI: 10.1002/app.24530.
- 19. Kadla, J.F. & Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin-synthetic polymer blends, Compos Part A: Appl. S. 35, 395-400. DOI: 10.1016/j.compositesa.2003.09.019.
- 20. Jesionowski, T. & Krysztafkiewicz, A. (2000). Comparison of the techniques used to amorphous hydrated silicas, J. Non--Cryst. Solids 277, 45-57. DOI: 10.1016/S0022-3093(00)00299-4.
- 21. Yan, M., Yang, D., Deng, Y., Chen, P., Zhou, H. & Qiu, X. (2010). Influence of pH on the behavior lignosulfonate macromolecules in aqueous solution, Colloids Surf. A 371, 50-58. DOI: 10.1016/j.colsurfa.2010.08.062.
- 22. Myrvold, B.O. (2008). A new model for the structure of lignosulphonates part 1. Behavior in dilute solutions, Ind. Crops. Prod. 27, 214-219. DOI: 10.1016/j.indcrop.2007.07.010.
- 23. Jesionowski, T., Żurawska, J., Krysztafkiewicz, A., Pokora, M., Waszak, D. & Tylus, W. (2003). Physicochemical and morphological properties of hydrated silica precipitated following alkoxysilane surface modification, Appl. Surf. Sci. 205, 212-224. DOI: 10.1016/S0169-4332(02)01090-5.
- 24. Jesionowski, T., Pokora, M., Sobaszkiewicz, K. & Pernak J. (2004). Preparation and characterization of functionalized precipitated silica SYLOID®244 using ionic liquids as modifiers, Surf. Interface Anal. 36, 1491-1496. DOI: 10.1002/sia.1927.
- 25. Szwarc-Rzepka, K., Marciniec, B., Jesionowski, T. (2013). Immobilization of multifunctional silsesquioxane cage on precipitated silica supports, Adsorption 19, 483-494. DOI: 10.1007/ s10450-013-9470-2.
- 26. Ye, D., Jiang, X., Xia, C., Liu, L. & Zhang, H. (2012). Graft polymers of eucalyptus lignosulfonate calcium with acrylic acid: Synthesis and characterization, Carbohydr. Polym. 89, 876-882. DOI: 10.1016/j.carbpol.2012.04.024.
- 27. Lü, Q., He, Z., Zhang, J. & Lin, Q. (2011). Preparation and properties of nitrogen-containing hollow carbon nanospheres by pyrolysis of polyaniline-lignosulfonate composites, J. Anal. Appl. Pyrol. 92, 152-157. DOI: 10.1016/j.jaap.2011.05.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e19294d2-4ba7-43b1-ba4b-51d0e2271153