Identyfikatory
Warianty tytułu
Wdrożenie badań omicznych w celu zwiększenia efektywności fitoremediacji – przegląd
Języki publikacji
Abstrakty
Phytoremediation is recognized as a cost-effective and widely acceptable alternative to chemical and physical technologies of soil remediation but requires an overall longer time to achieve success. In the last decade, the vast progress in omics research had led to improvements in our understanding of plants metabolism under exposure to toxic substances and the interactions between microbial communities and plants. Omics research includes a numer of disciplines aimed at explaining the biological and chemical principles of functioning a particular organism exposed to selected factors using modern methods of molecular biology (example: rt-qPCR - Quantitative polymerase chain reaction in real time). The names of individual branches of omics studies arise from a group of studied substances, example: transcriptomic refers to research related to changes occurring in the organism at the level of its transcriptome, and proteomics deals with the determination of complete information on the proteomic composition of a given sample. By merging available omics tools with new bioinformatic approaches, it is possible to understand and determinate the specific patterns of plants response to various stress factors. In this review, we provide an overview of how omics research including transcriptomic, proteomic, genomic and metagenomic approaches might be used to reduce the negative impact of toxic elements to plants growth and development in order to ultimately enhance the phytoremediation efficiency.
Fitoremediacja jest uznawana za opłacalną i powszechnie akceptowaną alternatywę dla chemicznych i fizycznych technologii remediacji gleby, ale wymaga dłuższego czasu, aby osiągnąć sukces. W ostatnim dziesięcioleciu ogromny postęp w badaniach omicznych doprowadził do poprawy zrozumienia metabolizmu roślin poddanych ekspozycji na substancje toksyczne oraz interakcji pomiędzy mikroorganizmami symbiotycznymi a roślinami. Badania omiczne obejmują szereg dyscyplin zmierzających do wyjaśniania biologiczno-chemicznych zasad funkcjonowania wybranego organizmu poddanego danym czynnikom za pomocą nowoczesnych metod biologii molekularnej (np. rt-qPCR - ilościowa reakcja łańcuchowa polimerazy w czasie rzeczywistym). Nazwy poszczególnych gałęzi badań omicznych powstają od grupy badanych substancji, np. transkryptomika dotyczy badań związanych ze zmianami zachodzącymi w organizmie na poziomie jego transkryptomu, a proteomika zajmuje się określeniem pełnej informacji o składzie proteomicznym danej próbki. Łącząc dostępne narzędzia omiczne z nowymi technikami bioinformatycznymi, możliwe jest zrozumienie i określenie specyficznych wzorców reakcji komórek roślin na różne czynniki stresowe. W pracy przedstawiono przegląd najnowszych badań omicznych, w tym transkryptomicznych, proteomicznych, genomicznych i metagenomicznych, stosowanych w badaniach nad zmniejszeniem negatywnego wpływu toksycznych substancji na wzrost i rozwój roślin w celu zwiększenia skuteczności procesu fitoremediacji.
Czasopismo
Rocznik
Tom
Strony
361--373
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
- Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering, ul. Brzeźnicka 60A, 42-201 Częstochowa
- Université Lille Nord de France, LGCgE-Lille 1, Ecologie Numérique et Ecotoxicologie, F-59650 Villeneuve d’Ascq, France
Bibliografia
- [1] Chaâbene Z., Rorat A., Hakim IR., Bernard F., Douglas GC., Elleuch A., Vandenbulcke F., Mejdoub H., Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera), Chemosphere 2018, 197, 123-134.
- [2] Grobelak A., Świątek J., Murtaś A., Jaskulak M., Cadmium-induced oxidative stress in plants, cadmium toxicity, and tolerance in plants, from physiology to remediation, Cadmium Toxicity and Tolerance in Plants 2019, 213-231.
- [3] Anjum NA., Shahid U., Iqbal M., Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants-implications for phytoremediation, Environmental Science and Pollution Research 2014, 21(17), 10286-10293.
- [4] Cevher-Keskin B., Selçukcan-Erol Ç., Yüksel B., Ertekin Ö., Yıldızhan Y., Onarıcı S., Memon A.R., Comparative transcriptome analysis of Zea mays in response to petroleum hydrocarbon stress, Environmental Science and Pollution Research 2018, 25(32), 32660-32674.
- [5] Song F., Li J., Fan X., Zhang Q., Chang W., Yang F., Geng G., Transcriptome analysis of Glomus mosseae/Medicago sativa mycorrhiza on atrazine stress, Scientific Reports 2016, 6(1), 202-245.
- [6] Chen Y., Zhi J., Zhang H., Li J., Zhao Q., Transcriptome analysis of Phytolacca americana L. in response to cadmium stress, PLoS One 2018, 13(6), e0199721.
- [7] Ren H., Wan Y., Zhao Y., Phytoremediation of polychlorinated biphenyl-contaminated soil by transgenic alfalfa associated bioemulsifier AlnA, Twenty Years of Research and Development on Soil Pollution and Remediation in China, 2018, 645-653.
- [8] Han X., Yin H., Song X., Zhang Y., Liu M., Sang J., Zhuo R., Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation, Plant Biotechnology Journal 2016, 14(6), 1470-1483.
- [9] Yıldırım K., Uylaş S., Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification, Plant Physiology and Biochemistry 2016, 109, 146-155.
- [10] Nahar N., Rahman A., Nawani N.N., Ghosh S., Mandal A., Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana, Journal of Plant Physiology 2017, 218, 121-126.
- [11] Cox A., Venkatachalam P., Sahi S., Sharma N., Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research, Plant Physiology Biochemistry 2017, 107, 147-163.
- [12] Bramhachari P.V., Nagaraju G.P., Kariali E., Metagenomic approaches in understanding the mechanism and function of PGPRs: Perspectives for sustainable agriculture, Agriculturally Important Microbes for Sustainable Agriculture, 2017, 163-182.
- [13] Liu X., Fu J., Tang N., Silva E.D., Cao Y., Turner B.L., Ma L.Q., Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata, Environmental Pollution 2017, 226, 212-218.
- [14] Feng J., Jia W., Lv S., Bao H., Miao F., Zhang X., Li Y., Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes, Plant Biotechnology Journal 2017, 16(2), 558-571.
- [15] Zhu H., Ai H., Cao L., Sui R., Ye H., Du D., Chen L., Transcriptome analysis providing novel insights for Cd-resistant tall fescue responses to Cd stress, Ecotoxicology and Environmental Safety 2018, 160, 349-356.
- [16] Marchand L., Sabaris C., Desjardins D., Oustrière N., Pesme E., Butin D., Mench M., Plant responses to a phytomanaged urban technosol contaminated by trace elements and polycyclic aromatic hydrocarbons, Environmental Science and Pollution Research 2015, 23(4), 3120-3135.
- [17] Azab E., Hegazy A.K., El-Sharnouby M.E., Elsalam H.E., Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants, International Journal of Phytoremediation 2016, 18(7), 738-746.
- [18] Jaskulak M., Rorat A., Grobelak A., Kacprzak M., Antioxidative enzymes and expression of rbcL gene as tools to monitor heavy metal-related stress in plants, Journal of Environmental Management 2018, 218, 71-78.
- [19] Bayçu G., Gevrek-Kürüm N., Moustaka J., Csatári I., Rognes S.E., Moustakas M., Cadmiumzinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure, Environmental Science and Pollution Research 2016, 24(3), 2840-2850.
- [20] Kumar D., Pannu R., Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: A review, Bioresources and Bioprocessing 2018, 5(1), 29.
- [21] Benisrael M., Wanner P., Aravena R., Parker B.L., Haack E.A., Tsao D.T., Dunfield K.E., Toluene biodegradation in the vadose zone of a poplar phytoremediation system identified using metagenomics and toluene-specific stable carbon isotope analysis, International Journal of Phytoremediation 2019, 1-10.
- [22] Ma B., Lyu X., Zha T., Gong J., He Y., Xu J., Reconstructed metagenomes reveal changes of microbial functional profiling during PAHs degradation along a rice (Oryza sativa) rhizosphere gradient, Journal of Applied Microbiology 2015, 118(4), 890-900.
- [23] Kumar V., Almomin S., Al-Aqeel H., Al-Salameen F., Nair S., Shajan A., Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa, Plos One 2018, 13(8).
- [24] Balcom I.N., Driscoll H., Vincent J., Leduc M., Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals, F1000Research 2018, 5, 1881.
- [25] Phillips L.A., Greer C.W., Farrell R.E., Germida J.J., Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil, Applied Soil Ecology 2012, 52, 56-64.
- [26] Hao D., Zhang C., Xiao P., The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing, Journal of Basic Microbiology 2018, 58(6), 501-512.
- [27] Hou J., Liu W., Wu L., Hu P., Ma T., Luo Y., Christie P., Modulation of the efficiency of trace metal phytoremediation by Sedum plumbizincicola by microbial community structure and function, Plant and Soil 2017, 421(1-2), 285-299.
- [28] Das N., Bhattacharya S., Maiti M.K., Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation, Plant Physiology and Biochemistry 2016, 105, 297-309.
- [29] Zhou Q., Guo J., He C., Shen C., Huang Y., Chen J., Yang Z., Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress, Environmental Science & Technology 2016, 50(12), 6485-6494.
- [30] Mazari K., Landa P., Přerostová S., Müller K., Vaňková R., Soudek P., Vaněk T., Thorium impact on tobacco root transcriptome, Journal of Hazardous Materials 2017, 325, 163-169.
- [31] Wang S., Wei S., Ji D., Bai J., Co-planting cd contaminated field using hyperaccumulator Solanum Nigrum L. through interplant with low accumulation welsh onion, International Journal of Phytoremediation 2015, 17(9), 879-884.
- [32] Grobelak A., Kokot P., Świątek J., Jaskulak M., Rorat A., Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals, Journal of Ecological Engineering 2018, 19(5), 150-157.
- [33] Bernard F., Dumez S., Lemière S., Platel A., Nesslany F., Deram A., Vandenbulcke F., Cuny D., Impact of cadmium on forage kale (Brassica oleracea var. viridis cv “Prover”) after 3-,10- and 56-day exposure to a Cd-spiked field soil, Environmental Science and Pollution Research 2018, 1-9.
- [34] Zhang L., Rylott E.L., Bruce N. C., Strand S.E., Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT, Planta 2018, 1-9.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e192497e-4c44-4c3a-8ad1-ba166656e215