PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coal Cleaning Versus the Reduction of Mercury and other Trace Elements’ Emissions from Coal Combustion Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Samples of steam coal used in heat and power plants as well as densimetric fractions obtained on a laboratory scale by dense organic liquid separation have been examined. The contents of ash, mercury, chromium, cadmium, copper, nickel and lead have been determined in coal, in the light and medium fraction as well as in the refuse. The degree of removal of mineral matter and the examined heavy metals as well as the coal combustible parts yield have been determined. Examination of 5 coals revealed that it is possible to remove 41% of mercury and more than 35% of other heavy metals bound to mineral matter in coal.
Rocznik
Strony
115--127
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Air Protection, Silesian Technical University in Gliwice
  • Institute of Environmental Engineering of the Polish Academy of Sciences
Bibliografia
  • [1] Aleksa, H., Dyduch, F. & Wierzchowski, K. (2007). Chlor i rtęć w węglu i możliwości ich obniżenia metodami przeróbki mechanicznej, Górnictwo i Geoinżynieria, 31, 3, 35-48.
  • [2] Ambient Air Pollution by Mercury (Hg), (2002), Paper, Office for Official Publication of the European Communities, Luxembourg, http://ec.europa.eu/environment/air/pdf/pp_mercury1.pdf
  • [3] Blaschke, W. (2009). Przeróbka węgla kamiennego - wzbogacanie grawitacyjne, Wyd. Inst. Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków 2009.
  • [4] Brown, T.D., Smith, D.N., O’Dowd, W.J. & Hargis Jr, R.A. (2000). Fuel Processing Technology, 311, 65-66.
  • [5] Central Statistical Office, (2011), Environment 2011, Warsaw.
  • [6] Davidson, R.M., Reeve D.A., Slos L.L. & Smith I.M. (2003). Trace Elements - Occurrence, Emissions and Control. IEA Clean Coal Centre 2003.
  • [7] Diaz-Somoano M., Unterberger S. & Hein K.R.G. (2007). Fuel Processing Technology, 88, 259-263.
  • [8] Dunham, G.E., Miller, S.J., (1998). Environmental Progress, 203, 17.
  • [9] EPA, U.S. (1998). Study of hazardous air pollutant emissions from electric utility steam generating units - Final Report to Congress. EPA-453/R-98-004a (February 1998) (Utility Air Toxics Study) Exec. Summ. At ES-4.
  • [10] EPA’s roadmap for Mercure, (2006). EPA - HQ-OPPT-2005-0013, July 2006.
  • [11] Finkelman, R.B., Stanton, R.W., Cecil, C.B. & Minkin, J.A. (1975). Modes of occurrence of selected trace elements in several Appalachian coals, American Chemical Society Preprints, Fuel Chemistry Division, 24, 1, 236-241.
  • [12] Gibb, W.H., Clarke, F. & Mehta, A.K. (2000). Fuel Processing Technology, 365, 65-66.
  • [13] Glenn, A.N. (1992). Environmental Progress, 11, 140.
  • [14] Gluskoter, H.J., Shimp, N.F. & Rucz, R.R. (1981). Coal Analyses, Trace Elements and Mineral Mater in Chemistry of Coal Utilization, second supplementary, 369-424, USA.
  • [15] Hlawiczka, S. & Fudala, J. (2003). Distribution of Cd, Pb and Hg emissions among sectors of economy in Poland and the emission assessment for the years 1990-2000 w: Environmental Engineering Studies, Polish Research on the way to the EU, Kluwer Academic/Plenum Publishers, New York, 1-11.
  • [16] Hower, J.C., Finkelman, R.B., Rathbone, R.F. & Goodman, J. (2000). Energy Fuels, 14, 212.
  • [17] Huggins, F.E., Yap, N., Huffman, G.P. & Senior, C.L. (2003). Fuel Processing Technology, 82, 167-172.
  • [18] Integrated Pollution Prevention and Control (IPPC), Draft Reference Dokument on Best Available Techniques for Large Combustion Plants, European Commission, Draft Novemeber 2004.
  • [19] IPPC Draft Reference Document on Best Available Techniques for Large Combustion Plants, May 2005, European Commision, ftp://ftp.jrc.es/pub/eippcb/doc/lcp_fi nal_0505.pdf.
  • [20] Kabata-Pendias, A. & Pendias, H. (1979). Pierwiastki śladowe w środowisku biologicznym, Wydawnictwo Geologiczne, Warszawa 1979.
  • [21] Kolker, A. & Finkelman R.B. (1998). Potentially Hazardous Elements in Coal, Modes of Occurrence and Summary of Concentration Data for Coal Components, Coal Preparation, 19, 133-157.
  • [22] Kolker, A., Senior, C.L. & Quick, J.C. (2006). Applied Geochemistry, 21, 1821-1836.
  • [23] Konieczyński J. & Zajusz-Zubek, E. (2011). Distribution of selected trace elements in dust containment and flue gas desulphurisation products from coal-fired power plants, Archives of Environmental Protection, 37, 2, 3-14.
  • [24] Konieczyński, J., Komosiński, B., Jabłońska, M. & Cieślik, E. (2012). Prognosis of environmental impact of trace elements from brown coal-fired power plant Bełchatów, Archives of Environmetal Protection, 38, 3, 59-73.
  • [25] Kubica, B. & Pyta, H. (2010). Measurement methods of reactive gaseous mercury in the air, Oceanological and Hydrobiological Studies, 39 S1, 115-127.
  • [26] Liu, K.L., Gao, Y., Riley, J.T., Pan, W.P., Maehta, A.K. & Ho, K.K. (1992). Energy Fuels, 11, 140-144.
  • [27] Lopez-Anton, M.A., Tascon, J.M.D. & Martinez-Tarazona, M.R. (2002). Fuel Processing Technology, 77, 353.
  • [28] MERCYMS (An Integrated Approach to Assess the Mercury Cycling in the Mediterranean Basin), 5 Program Ramowy Unii Europejskiej, EVK3-CT2002-00070, lata 2002-2005, http://www.cs.iia.cnr.it/ MERCYMS/project.html.
  • [29] Meserole, F.B., Chang, R., Carey, T.R., Machac, J. & Richardson, C.F. (1999). Journal of the Air & Waste Management Association, 694, 49.
  • [30] Pacyna, J.M. & Pacyna E.G. (2004). Mercury emission from anthropogenic sources worldwide: Current status and future scenarious, In procc. of International Workshop on Harmonization of Mercury Measurements, Methods and Model to Assess Source Receptor Impact on Air Quality and Human Health, Maratea, Italy, 2004.
  • [31] Parzentny, H. (1989). Różnice w zawartości i sposobie związania niektórych pierwiastków w węglu Górnośląskiego Zagłębia Węglowego w profilu pojedynczego
  • [32] Pirrone. N. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmospheric Chemistry and Physics, 10, 5951-5964.
  • [33] Praca zbiorowa pod red. S. Jasieńki, (1995), Chemia i fizyka węgla, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1995.
  • [34] Pyta, H., Rosik-Dulewska, Cz. & Czaplicka, M. (2009). Speciation of Ambient Mercury In the Upper Silesia Region, Poland, Water Air & Sol Pollution, 197, 233-240.
  • [35] Schroeder, W.H. & Munthe, J. (1998). Atmospheric mercury - an overview, Atmospheric Environment, 29, 809-822.
  • [36] Senior, C.L. (2001). Behaviour of mercury in air pollution control devices on coal-fired utility boilers, Proceedings of 21 st Century: Impacts of Fuel Quality and Operations, Engineering Foundation Conference.
  • [37] Swaine, D.J. & Goodarzi, F. (1995). Environmental aspects of trace elements in coal, Kluwer Academic Publishers, Netherlands 1995
  • [38] U.S. EPA, (2003). Performance and cost of mercury and multipollutant emission control technology applications on electric utility boilers, Prepared for Office of Research and Development, EPA-600/R-03-110 (October 2003).
  • [39] Yudovich, Ya.E. & Ketris, M.P. (2005). International Journal of Coal Geology, 62, 135-165.
  • [40] Zubovic, P., Stadnichenko, T. & Sheffey, W.B. (1960). The association of minor elements with organic and inorganic phases of coal, U.S. Geological Survey Professional Paper 400-B, B84-B87.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1919c1d-b079-4743-a510-e146e396a3c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.