Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Digitalizacja w górnictwie i przetwórstwie minerałów – nowe rozwiązanie dla potencjalnego zwiększenia odzysku metali
Języki publikacji
Abstrakty
The paper deals with issues of increasing the recovery of useful copper minerals through the application of specific production scheme. A new model of production presented in the paper is connected with technology for monitoring and control of copper ore processing and is based on artificial intelligence. The technology operates at the copper flotation stage and consists of a vision system for analysis of flotation froth images. Image processing algorithms determine the characteristics of the froth and on that basis are capable of modifying and optimizing the flotation process course. The article characterizes the concept and expected outcomes resulting from the implementation of this technique.
W artykule podjęto problematykę zwiększenia odzysku użytecznych minerałów miedzi poprzez zastosowanie określonego schematu produkcji. Przedstawiony w artykule nowy model produkcji jest powiązany z technologią monitorowania i kontroli przeróbki rudy miedzi i opiera się na sztucznej inteligencji. Technologia ta działa na etapie flotacji miedzi i składa się z systemu wizyjnego do analizy obrazów piany flotacyjnej. Algorytmy przetwarzania obrazu określają charakterystykę piany i na tej podstawie są w stanie modyfikować i optymalizować przebieg procesu flotacji. W artykule scharakteryzowano koncepcję i oczekiwane rezultaty wynikające z wdrożenia tej techniki.
Czasopismo
Rocznik
Tom
Strony
29--34
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Krakow, Faculty of Civil Engineering and Resource Management, Cracow, Poland
autor
- AGH University of Krakow, Faculty of Civil Engineering and Resource Management, Cracow, Poland
autor
- Łukasiewicz Research Network – Tele and Radio Research Institute, Warsaw, Poland
autor
- Łukasiewicz Research Network – Tele and Radio Research Institute, Warsaw, Poland
autor
- AGH University of Krakow, Faculty of Civil Engineering and Resource Management, Cracow, Poland
autor
- AGH University of Krakow, Faculty of Civil Engineering and Resource Management, Cracow, Poland
autor
- AGH University of Krakow, Faculty of Civil Engineering and Resource Management, Cracow, Poland
autor
- KGHM „Polish Copper” S.A., Lubin, Poland
Bibliografia
- 1. Abbaker, A., & Aslan, N. (2024). A comparative study of anionic and cationic collector in microbubble-assisted flotation for coarse quartz particle: Performance and adsorption. Acta Montanistica Slovaca, 29(2), 239–255.
- 2. Abbireddy, C. O. R., & Clayton, C. R. I. (2009). A review of modern particle sizing methods. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 162, 193–201.
- 3. Arrowsmith, A., & Ashton, N. (1991). Air pollution control from the mineral processing industries. Minerals Engineering, 4(7–11), 1071–1080.
- 4. Bowman, E., Soga, K., & Drummond, W. (2001). Particle shape characterization using Fourier descriptor analysis. Géotechnique, 51, 545–554.
- 5. Cavarretta, I. (2009). The influence of particle characteristics on the engineering behaviour of granular materials (Doctoral dissertation). Imperial College London, UK.
- 6. Erskine, A. N., Jin, J., Lin, C. L., Miller, J. D., & Wang, S. (2024). 3D characterization of internal fractures in Rochester ore particles crushed by plant-scale HPGR for various pressures using high-resolution X-ray computed tomography. Mining, Metallurgy & Exploration, 1–10.
- 7. Fonseca, J. (2011). The evolution of morphology and fabric of a sand during shearing (Doctoral dissertation). Imperial College London, UK.
- 8. Galas, J. (1994). Image processing and recognition using diffractive and digital techniques. In Diffractometry and Scatterometry (pp. 19–35). SPIE.
- 9. Galas, J., Daszkiewicz, M., Sawicki, A., Godwod, K., & Szawdyn, J. (1994). Construction of image recognition process on the base of optical Fourier diffractometry. Optical Engineering, 33(4), 1106–1113.
- 10. Galas, J., Lenczowski, S., & Daszkiewicz, M. (1994). Applications of hybrid optical methods in mineral processing control systems. In Automated 3D and 2D Vision (Vol. 2249, pp. 439–446). SPIE.
- 11. Janaszek, A. (2024). Determining the soil particle shape by use of dynamic image analysis. Acta Montanistica Slovaca, 29(2), 417–426.
- 12. Konieczny, A., Pawlos, W., Jach, M., Pępkowski, R., Krzemińska, M., & Foszcz, D. (2011). Application of visualization system for controlling operating parameters of flotation machines in KGHM Polska Miedź S.A. Division of Concentrators (in Polish). Górnictwo i Geologia, 6(2), 61–71.
- 13. Kordek, J., & Lenczowski, S. (1989). Methods of optical control of processing as exemplified by the diffractometric analysis of flotation froth images of copper ores. Scientific Journals of AGH, 1262, 146.
- 14. Lenczowski, S., & Galas, J. (1995). Optical analysis of metal content in the column complex ore flotation froth. In Proceedings of the XIX International Mineral Processing Congress (pp. 257–260). San Francisco, USA.
- 15. Lenczowski, S., & Galas, J. (1998). Froth image analysis in a flotation control system. In E. T. Woodburn (Ed.), Frothing in Flotation II, Recent Advances in Coal Processing (Vol. 2, pp. 275–308). Gordon and Breach Science Publisher.
- 16. Lenczowski, S., Galas, J., & Kordek, J. (1993). Unconventional optical methods of controlling the beneficiation processes of minerals. In Proceedings of MCGM'93 – The Third International Conference on Measurement and Control of Granular Materials (pp. 97–101). Shenyang, P.R. China.
- 17. Lin, C., & Miller, J. (2010, February). Particle damage during breakage using high resolution X-ray Micro CT. Paper presented at the SME Annual Meeting, Phoenix, USA.
- 18. Nad, A., & Saramak, D. (2018). Comparative analysis of the strength distribution for irregular particles of carbonates, shale, and sandstone ore. Minerals, 8(2).
- 19. Nadolski, S., Davaanyam, Z., Klein, B., & Zeller, M. W. (2013). A new method for energy benchmarking of mineral comminution. Paper presented at the World Mining Congress, Montreal, Canada.
- 20. Numbi, B. P., & Xia, X. (2015). Systems optimization model for energy management of a parallel HPGR crushing process. Applied Energy, 149, 133–147.
- 21. Saramak, A., Naziemiec, Z., & Saramak, D. (2016). Analysis of noise emission for selected crushing devices. Mining Science, 23, 145–154.
- 22. Saramak, D. (2021). Challenges in raw material treatment at the mechanical processing stage. Minerals, 11(9).
- 23. Saramak, D., Tumidajski, T., & Skorupska, B. (2010). Technological and economic strategies for the optimization of Polish electrolytic copper production plants. Minerals Engineering, 23(10), 757–764.
- 24. Schmitt, M., Halisch, M., Müller, C., & Fernandes, C. P. (2016). Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography. Solid Earth, 7, 285–300.
- 25. Sukumaran, B., & Ashmawy, A. (2001). Quantitative characterization of discrete particles. Géotechnique, 55, 619–627.
- 26. Sztaba, K., & Lenczowski, S. (1993). Unconventional multidimensional evaluation of granulated material. In Proceedings of the MCGM'93 – The Third International Conference on Measurement and Control of Granular Materials (pp. 70–75). Shenyang, P.R. China.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1905ddf-5cf0-40ce-a355-e9fdf826e8d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.