Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
GAP and HTPB are polymers on which the copolymer obtained in our work is based. The following report indicates how to perform the polymerization reactions for these two polymers in order to obtain a copolymer that combines their individual positive physico-chemical properties. It demonstrates how the ratio of substrates and reaction conditions affect the polymer properties. It has been shown that increasing the amount of epichlorohydrin attached to HTPB significantly affects the copolymer viscosity. This has a later effect on polymer processing, as well as on the hydroxyl values being too low. This is important for the subsequent production of polyurethanes. Analysis of the results allows the reaction conditions to be designed so as to generate a polymer with the best properties. The reactions were carried out in two stages. The first stage was the connection of polyepichlorohydrin (PECH) to HTPB, and the second was azidation of the resultant PECH-HTPB-PECH copolymer. The influence of the amount of epichlorohydrin attached to HTPB on the copolymer properties (e.g. viscosity) was demonstrated. Analysis of the second stage, the preparation of the GAP-HTPB-GAP copolymer (by azidation of the PECH-HTPB-PECH copolymer), showed that the nitrogen content in the copolymer has a significant effect on the viscosity and heat of polymer combustion.
Słowa kluczowe
Rocznik
Tom
Strony
566--583
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High-Energetic Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High-Energetic Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High-Energetic Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High-Energetic Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High-Energetic Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
Bibliografia
- [1] Khan, A.S.; Dey, A.; Athar, J.; Sikder, A.K. Calculation of Enthalpies of Formation and Band Gaps of Polymeric Binders. RSC Adv. 2014: 32840-32846.
- [2] Chmielarek, M.; Maksimowski, P.; Gołofit, T.; Cieślak, T.; Pawłowski, W.; Tomaszewski, W. Modification of HTPB (α,ω-Dihydroxypolybutadiene) by Esterification, Silanization, Epoxidation and Hydrogenation. Mater. Wysokoenerg. (High Energy Mater.) 2020, 12(1): 203-220.
- [3] Sadeghi, G.M.M.; Morshedian, J.; Barikani, M. The Effect of Solvent on the Microstructure, Nature of Hydroxyl End Groups and Kinetics of Polymerization Reaction in Synthesize of Hydroxyl Terminated Polybutadiene. React. Funct. Polym. 2006, 66: 255-266.
- [4] Chmielarek, M.; Skupiński, W.; Wieczorek, Z.; Dziura, R. α,ω-Dihydroxypolybutadiene (HTPB). Properties and Production. (in Polish) Przem. Chem. 2012, 91(9):1803-1807.
- [5] Chmielarek, M.; Skupiński, W.; Wieczorek, Z. Synthesis of HTPB using a Semibatch Method. Mater. Wysokoenerg. (High Energy Mater.) 2020, 12(1): 192-202.
- [6] Zhang, Q.; Shu, Y.; Liu, N.; Wang, X.; Mo, H.; Xu, M. Hydroxyl Terminated Polybutadiene: Chemical Modification and Application of these Modifiers in Propellants and Explosives. Cent. Eur. J. Energ. Mater. 2019, 16: 153-193.
- [7] Xiuzhong Zhu, W. Comparative Study of Structures and Properties of HTPBs Synthesized via Three Different Polymerization Methods. Polym. Test. 2018, 68:201-207.
- [8] Zhang, W.; Zhang, G.; Du, L.; Zhang, C.; Li, L.; Zhu, J.; Pei, J.; Wu, J. Synthesis of Hydroxyl-terminated Polybutadiene Bearing Pendant Carboxyl Groups by Combination of Anionic Polymerization and Blue Light Photocatalytic Thiol-ene Reaction and Its pH-triggered Self-assemble Behavior. React. Funct. Polym. 2018, 127: 161-167.
- [9] Rarata, G.; Surmacz, P. Contemporary Solid Rocket Propellants. (in Polish) Prace Instytutu Lotnictwa 2009, 202: 112-124.
- [10] Reshmi, S.K.; Vijayalakshmi, K.P.; Thomas, D.; Arunan, E.; Nair, C.P.R. Glycidyl Azide Polymer Crosslinked Through Triazoles by Click Chemistry: Curing, Mechanical and Thermal Properties. Propellants Explos. Pyrotech. 2013, 38:525-532.
- [11] Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I.K. Azido Polymers – Energetic Binders for Solid Rocket Propellants. J. Macromol. Sci. 2003, 35(20): 505-545.
- [12] Wojewódka, A.; Kożuch, K. Modern High-energetic Polymers. (in Polish) CHEMIK 2010, 64(1): 15-20.
- [13] Mohan, M.; Raju, K.M.; Sreedhar, B. Synthesis and Characterization of Glycidyl Azide Polymer with Enhanced Azide Content. Int. J. Polym. Mater. 2006, 55: 441-455.
- [14] Frankel, M.B.; Grant, L.R.; Flanagan, J.E. Historical Development of Glycidyl Azide Polymer. J. Propul. Power 1992, 8: 560-563.
- [15] Murali Mohan, Y.; Mohana Raju, K. Synthesis and Characterization of HTPB-GAP Cross-linked Co-polymers. Desig. Monom. Polym. 2005, 8(2): 159-175.
- [16] Sundararajan, G.; Vasudevan, V. Synthesis of GAP-PB-GAP Triblock Copolymer and Application as Modifier in AP/HTPB Composite Propellant. Propellants Explos. Pyrotech. 1999, 24: 295-300.
- [17] Navida, A.; Shazia, A.; Rafia, N.; Zafar, B.I.; Masroor-ul-Hassan, R. Microstructure Study of Propellant Binder. Adv. Mater. Res. 2012, 570: 37-42.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e18fac5e-46a5-4148-903b-aa04006565aa