Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is necessary to find innovative ways to improve the environmental performance of production processes and products. The technology of extracting valuable components from raw materials of plant origin is often used in technological processes of the food, pharmaceutical, chemical and other industries. Extraction is the most energy intensive step. The factors contributing to the extraction of humic acids from plant substrates under the action of electric discharge were studied. The purpose of the work was to study the efficiency of humic acids extraction from the biosubstrate under the action of electric discharges. The physical experiment showed that the main factor influencing the intensity of extraction is the degree of grinding of the solid phase of the biosubstrate-water suspension. The efficiency of electric discharge grinding depends on the pressure amplitude at the distance of the inner radius of the chamber and the number of discharge pulses. It was established that the number of chemical reagents (alkalis), usually used in the process of extracting humic acids from peat, can be reduced many times due to the appearance of radicals and peroxide compounds in the peat-water suspension resulting from the action of an electric discharge. The prospects of the non-thermal electric discharge method of intensification of the extraction of humic acids from biosubstrates were determined.
Czasopismo
Rocznik
Tom
Strony
317--327
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
- Institute of Impulse Processes and Technologies, National Academy of Sciences of Ukraine, Bohoyavlensky Avenue, 43a, Mykolayiv, 54018, Ukraine
autor
- Department of Environmental and Chemistry Engineering, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Department of Chemistry, V.O. Sukhomlynskyi National University of Mykolaiv, Nikolska Street, 24, Mykolaiv, 54030, Ukraine
autor
- Department of Ecology and Environmental Management, Petro Mohyla Black Sea National University, 68 Desantnykiv Street, 10, Mykolayiv, 54003, Ukraine
autor
- NGO "Open Environmental University", Mykolaiv, Ukraine
autor
- Department of Environmental and Chemistry Engineering, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- 1. Bezsonov, Ye., Mitryasova, O., Smyrnov, V., Smyrnova, S. 2017. Influence of the South-Ukraine electric power producing complex on the ecological condition of the Southern Bug River. Eastern-European Journal of Enterprise Technologies, 4/10(88), 20–28.
- 2. Ma, C., Li, L., Wang, G. Yuan X. B. 2014. Synthesis and characterization of substituted-ammonium humic acid fluid loss additive for oil-based drilling fluids. Trans. Tech. Publications, Switzerland: Advanced Materials Research, 1004, 623–626.
- 3. Ma, C., Li, L., Lu, H., Yuan, X., Wang, G. 2014a. Study on the effect of humic acid acetamide on the rheological properties of diesel oil-based drilling fluids. Applied Mechanics and Materials, 620, 449-452. DOI: 10.4028/www.scientific.net/AMM.620.449
- 4. Peat: Its Origins, Characteristics and Geological Transformations. 2015. In A Global Perspective. [Eds:] G. B. Stracher, A. Prakash, G. Rein, Elsevier Ltd., 4, 13–38. doi.org/10.1016/B978-0-444-59510-2.00002-1
- 5. Cammack, K.M., Thomas, M.G., Enns, R.M. 2009. Reproductive traits and their heritabilities in beef cattle. The Professional Animal Scientist, 25(5), 517–528.
- 6. Cook, R.L., Langford, C.H. 1999. A biogeopolymeric view of humic substances with application to paramagnetic metal effects on 13C NMR. [In:] Understanding humic substances. Advanced methods, properties and applications. [Eds:] E.A. Ghabbour and G. Davies. Boston: Royal Society of Chemistry, 31–48.
- 7. Dudkin, D.V., Zmanovskaya, A.S. 2014. Formation of humic acids under cavitation impact on peat in aqueous alkaline media. Chemistry for Sustainable Development, 22, 119–121.
- 8. Ishchenko, V., Pohrebennyk, V., Kochanek, A., Przydatek, G. 2017. Comparative environmental analysis of waste processing methods in paper recycling. International Multidisciplinary Geoconference SGEM 2017, 17(51), 227–234. DOI: 10.5593/sgem2017/51/s20.030
- 9. Ishchenko, V., Pohrebennyk, V., Kochan, R., Mitryasova, О., Zawiślak S. 2019. Assessment of Hazardous Household Waste Generation in Eastern Europe. International Multidisciplinary Scientific Geoconference SGEM 2019, Albena, Bulgaria. 30 June – 6 July 2019, 6.1(19), 559−566.
- 10. Hlavatska, L., Ishchenko, V., Pohrebennyk, V., Salamon, I. 2021. Material Flow Analysis of Waste Electrical and Electronic Equipment in Ukraine. Journal of Ecological Engineering, 22(9), 199–208. DOI: 10.12911/22998993/141571
- 11. Giannouli, A., Kalaitzidis, S., Siavalas, G., Chatziapostolou, A., Christanis, K., Papazisimou, S., Foscolos, A. 2009. Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. International Journal of Coal Geology, 77(3–4), 383–393. DOI:10.1016/j.coal.2008.07.008
- 12. Ghabbour, E.A., Davies, G. 2001. Humic substances: structures, model and functions, Cambrige: The Royal Society of Chemistry, 388.
- 13. Gholami, P., Khataee, A., Soltani, R. D. C., Bhatnagar, A. 2019. A review on carbon-based materials for heterogeneous sonocatalysis: Fundamentals, properties and applications. Ultrasonics Sonochemistry, 104681. DOI: 10.1016/j.ultsonch.2019.104681
- 14. Guo, X., Liu, H., Wu, S. 2019. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Science of the Total Environment, 662, 501–510. DOI: 10.1016/j.scitotenv.2019.01.137
- 15. Hayes, M.H.B., Mylotte, R., Swift, R.S. 2017. Humin: Its composition and importance in soil organic matter. Advances in Agronomy, 43, 47–138. DOI: 10.1016/bs.agron.2017.01.001
- 16. Joseph, I.V., Roncaglia, G., Tosheva, L., Doyle, A.M. 2019. Waste peat ash mineralogy and transformation to microporous zeolites. Fuel Processing Technology, 194, 106124. DOI: 10.1016/j.fuproc.2019.106124
- 17. Kardasz, E., Pstrowska, K., Kardasz, P., Pohrebennyk, V., Mitryasova, O. 2018. Influence of the Addition on the Fuel Combustion Process in the Diesel Engine, 8th International Multidisciplinary Scientific Geoconference SGEM 2018, Albena, Bulgaria. 30 June – 9 July 2018, 4.1(18), 425−432.
- 18. Khammar, N., Malhautier, L., Degrange, V., Lensi, R., Fanlo J.-L. 2004. Evaluation of dispersion methods for enumeration of microorganisms from peat and activated carbon biofilters treating volatile organic compounds. Chemosphere, 54(3), 243–254. DOI: 10.1016/s0045-6535(03)00721-5
- 19. Kim, J., Park, B., Son, Y., Khim, J. 2018. Peat moss-derived biochar for sonocatalytic applications. Ultrasonics Sonochemistry, 42, 26–30. DOI: 10.1016/j.ultsonch.2017.11.005
- 20. Kucukersan, S., Kucukersan, K., Colpan, I., Goncuoglu, E. 2005. The effects of humic acid on egg production and egg traits of laying hen. Vet. Med. Czech., 50(9), 406–410.
- 21. Kumar, C., Leggate, W. 2022. An overview of bio-adhesives for engineered wood products. International Journal of Adhesion and Adhesives. 118, 103187. doi.org/10.1016/j.ijadhadh.2022.103187.
- 22. Lesage, S., Novakowski, K. S., Brown, S., Millar, K. 2001. Humic acids enhanced removal of aromatic hydrocarbons from contaminated aquifers: developing a sustainable technology. Journal of Environment Science and Health, 36(8), 1515–1533.
- 23. Li, L., Yuan, X.B., Ma, C., Cheng, R.C., Yang, Y.P. 2014. Study on the effect of humic acid acetamide on the rheological properties of gas-to-liquid based drilling fluids. Applied Mechanics and Materials, 641–642, 447–50. DOI: 10.4028/www.scientific.net/amm.641-642.447
- 24. Malyushevskii, P.P, Levda, V.I., Maliushevska, A.P. 2004. Electroexplosive nonlinear, volumetric cavitation in technological reactors. Part 1 (Electrodischarge generation of a gas phase - nucleus of cavitation). Elektronnaya Obrabotka Materialov, 1, 40–46. (in Russian)
- 25. Malyushevskii, P.P., Levda, V. I., Maliushevska, A.P. 2004a. Electroexplosive nonlinear volumetric cavitation in technological reactors. Part II (Analysis of cavitation area structure). Elektronnaya Obrabotka Materialov, 2, 34–40. (in Russian)
- 26. Malyushevskii, P.P., Maliushevska, A.P. 2016. To the mechanism of electrodischarge enhancement of processes for the purification of plant fibers from noncellulose substances: Part 1. The processing medium, task setting, and research procedure. Surface Engineering and Applied Electrochemistry, 52(3), 263–269.
- 27. Malyushevskii, P.P., Maliushevska, A.P., Yushchishina, A.N. 2017. On the mechanism of electric discharge enhancement of processes for purifying plant fibers from noncellulose substances: Part 2. Chemical and electrophysical influence of electric discharge on an aqueous medium - experimental investigations. Surface Engineering and Applied Electrochemistry, 53(4), 383–393.
- 28. Malyushevskii, P.P., Maliushevska, A.P. 2020. Optimization of the Process of the Fine Electric Discharge Dispersion. Surface Engineering and Applied Electrochemistry, 56(3), 400–406.
- 29. Malyushevskaya, A., Yushchishina, A., Mitryasova, O., Salamon, I., Pohrebennyk, V. 2021. Optimization of extraction processes of water-soluble polysaccharides under electric field action. Przegląd Elektrotechniczny, 12 (R.97), 73–76.
- 30. Malyushevskaya, A., Koszelnik, P., Yushchishina, A., Mitryasova, O., Gruca-Rokosz, R. 2022. Green approach to intensify the extraction processes of substances from plant materials, Journal of Ecological Engineering, 23(7), 197–204.
- 31. Mitryasova, O., Pohrebennyk, V., Kochanek, A., Stepanova, O. 2017. Environmental footprint enterprise as indicator of balance it’s activity. 17th International Multidisciplinary Scientific Geoconference SGEM 2017, Albena, Bulgaria, 29 June – 5 July 2017, 51(17), 371–378.
- 32. Mitryasova, O., Koszelnik, P., Gruca-Rokosz, R., Smirnov, V., Smirnova, S., Bezsonov, Ye., Zdeb, M., Ziembowicz, S. 2020. Features of Heavy Metals Accumulation in Bottom Sediments of the Southern Bug Hydroecosystem. Journal of Ecological Engineering, 21(3), 51–60.
- 33. Opekunov, А., Opekunov, A.M., Kukushkin, S., Lisenkov, S. 2022. Impact of drilling waste pollution on land cover in a high subarctic forest-tundra zone. Pedosphere, 32, 414–425. doi.org/10.1016/S1002-0160(21)60083-8
- 34. Paul, S., Goswami, L., Pegu, R., Sundar Bhattacharya, S. 2020. Vermiremediation of cotton textile sludge by Eudrilus eugeniae: Insight into metal budgeting, chromium speciation, and humic substance interactions. Bioresource Technology, 314, 123753. doi.org/10.1016/j.biortech.2020.123753
- 35. Petty, B.D., Francis-Floyd, R. 2004. Pet fish care and husbandry. Veterinary Clinics of North America: Exotic Animal Practice, 7(2), 397–419. doi.org 10.1016/j.cvex.2004.02.003
- 36. Petrov, O., Petrichenko, S., Yushchishina, A., Mitryasova, O., Pohrebennyk, V. 2020. Electrospark method in galvanic wastewater treatment for heavy metal removal. Applied Sciences, 10, 5148. DOI: 10.3390/app10155148
- 37. Pham, D.M., Kasai, T., Yamamura, M., Katayama, A. 2020. Humin: No longer inactive natural organic matter. Chemosphere, 269, 128697. DOI: 10.1016/j.chemosphere.2020.128697
- 38. Poklonov, S.G. 2010. Determination of the breakdown voltage of an aqueous interelectrode gap. Surface Engineering and Applied Electrochemistry, 46(1), 64–69.
- 39. Pohrebennyk, V., Cygnar, M., Mitryasova, O., Politylo, R., Shybanova, A. 2016. Efficiency of sewage treatment of Company “Enzyme”. 16th International Multidisciplinary Scientific Geoconference SGEM 2016, Albena, Bulgaria, 30 June – 6 July 2016, Book 5, Ecology, Economics, Education and Legislation, Volume II, Ecology and Environmental Protection, 295–302.
- 40. Pohrebennyk, V., Koszelnik, P., Mitryasova, O., Dzhumelia, E., Zdeb M. 2019. Environmental monitoring of soils of post industrial mining areas. Journal of Ecological Engineering, 20(9), 53–61. DOI: 10.12911/22998993/112342
- 41. Rashid, I., Murtaza, G., Dar, A. A., Wang, Z. 2020. The influence of humic and fulvic acids on Cd bioavailability to wheat cultivars grown on sewage irrigated Cd-contaminated soils. Ecotoxicology and Environmental Safety, 205, 111347. DOI: 10.1016/j.ecoenv.2020.111347
- 42. Rocha, J.C., Rosa, A.H., Furlan, M. 1998. Analternative methodology for the extraction of humic substances from organic soils. Journ. Braz. Chem. Soc., 9(1), 51–56.
- 43. Saba, B., Kjellerup, B.V., Christy, A.D. 2021. Eco-friendly bio-electro-degradation of textile dyes wastewater. Bioresource Technology Reports, 15, 100734. DOI: 10.1016/j.biteb.2021.100734
- 44. Shathi, M.A., Minzhi, C., Khoso, N.A., Rahman, T., Bidhan, B. 2020. Graphene coated textile based highly flexible and washable sports bra for human health monitoring. Materials & Design, 193, 108792. DOI: 10.1016/j.matdes.2020.108792
- 45. Segura, J.H., Nilsson, M.B., Schleucher, J., Haei, M., Sparrman, T., Székely, A., Öquist, M.G. 2019. Microbial utilization of simple carbon substrates in boreal peat soils at low temperatures. Soil Biology and Biochemistry, 135, 438-448. DOI: 10.1016/j.soilbio.2019.06
- 46. Ahmadkalaei, S.P.J., Gan, S., Ng, H.K., Talib, S.A. 2021. The role of humic acid in Fenton reaction for the removal of aliphatic fraction of total petroleum hydrocarbons (diesel range) in soil. Environmental Science and Ecotechnology, 7, 100109.
- 47. Sopo, R. 2004. Peat. Survey of Energy Resources, Published by Elsevier Ltd, 233-246.
- 48. Steelink, C. 1999. What is Humic Acid? A Perspective of the Past Forty Years. [In:] Understanding Humic Substances. Advanced Methods, Properties and Applications. [Eds:] G. Davies, E. A. Ghabbour, Boston: Royal Society of Chemistry, 1-8.
- 49. Stevenson, E. 1994. J. Humus Chemistry: Genesis, Composition, Reactions. New York, pp. 496.
- 50. Tabakaev, R., Ibraeva, K., Yazykov, N., Shanenkov, I., Dubinin, Y., Zavorin, A. 2020. The study of highly mineralized peat sedimentation products in terms of their use as an energy source. Fuel, 271, 117593. DOI: 10.1016/j.fuel.2020.11759
- 51. Taylor, T.N. 1981. Paleobotany: An introduction to fossil plant biology. McGraw-Hill, New York, pp. 589.
- 52. Tombacz, E., Rice, J.A. 1999. Changes of colloidal state in aqueous systems of humic acids. [In:] Understanding Humic Substances. Advanced Methods, Properties and Applications. [Eds:] G. Davies, E. A. Ghabbour, Boston: Royal Society of Chemistry, 69-78.
- 53. Wershaw, R.L. 2004. Evaluation of conceptual models of natural organic matter (humus) from a consideration of the chemical and biochemical processes of humification. Reston, Va.: U.S. Dept. of the Interior, U.S. Geological Surve, 49.
- 54. Wen, Y., Zang, H., Freeman, B., Musarika, S., Evans, C. D., Chadwick, D. R., Jones, D. L. 2019. Microbial utilization of low molecular weight organic carbon substrates in cultivated peats in response to warming and soil degradation. Soil Biology and Biochemistry, 139, 107629. DOI: 10.1016/j.soilbio.2019.107629
- 55. Zanella, A., Ponge, J.-F., Jabiol, B., Sartori, G., Kolb, E., Le Bayon, R.-C., Viola, F. 2018. Terrestrial humus systems and forms – Keys of classification of humus systems and forms. Applied Soil Ecology, 122(1), 75-86. DOI: 10.1016/j.apsoil.2017.06.012
- 56. Zanella, A., Ponge, J.-F., Topoliantz, S., Bernier, N., Juilleret, J. 2018a. Agro humus systems and forms. Applied Soil Ecology, 122(2), 204-219. DOI: 10.1016/j.apsoil.2017.10.011
- 57. Zhang Y., Yuan Y., Tan, W. 2022. Influences of humic acid on the release of polybrominated diphenyl ethers from plastic waste in landfills under different environmental conditions. Ecotoxicology and Environmental Safety, 230, 113122. DOI: 10.1016/j.ecoenv.2021.113122
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e18d5954-1d19-4df4-805e-8d8e21fc6c37