Identyfikatory
Warianty tytułu
Biosorpcja Cr(III) z roztworów wodnych przez osad czynny
Języki publikacji
Abstrakty
The biosorption of Cr(III) from aqueous solution using activated sludge (AS) microorganisms was investigated under various experimental conditions regarding pH and temperature. Biosorption equilibrium parameters were determined based on the Langmuir and Freundlich isotherm model. The kinetic parameters were established using the equations of pseudo-first order and pseudo-second order. Moreover thermodynamic parameters have been calculated. Langmuir isotherm provided a better fit to the equilibrium data. The maximum experimentally determined sorption capacity 26.95 mg · g–1 obtained at 25oC and pH 5.0. The kinetics model of pseudo-second order row has been better describing experimental data. The negative value of free Gibbs energy (ΔG0) proves spontaneous Cr(III) biosorption by AS biomass and its decreasing along with temperature increase. The negative value of enthalpy (ΔH0) and entropy (ΔS0) indicates exothermic process and limitation of degree of freedom Cr(III) ions on the interphase surface solution/biosorbent. FT-IR spectroscopy analysis indicated the contribution of carboxylate groups towards the biosorption of Cr(III) by AS.
W pracy badano proces biosorpcji jonów chromu(III) z roztworów wodnych przez mikroorganizmy osadu czynnego (OC), w różnych warunkach pH i temperatury. Parametry równowagowe biosorpcji wyznaczono w oparciu o modele izoterm Langmuira i Freundlicha. Parametry kinetyczne określono za pomocą równań pseudopierwszego i pseudodrugiego rzędu. Obliczono również parametry termodynamiczne procesu. Izoterma Langmuira lepiej opisywała dane równowagowe. Maksymalna pojemność sorpcyjna wyznaczona eksperymentalnie wynosiła 26,95 mg · g–1 przy 25oC i pH 5,0. Model kinetyki pseudodrugiego rzędu lepiej opisywał dane doświadczalne. Ujemna wartość energii swobodnej Gibbsa (ΔG0) świadczyła o spontaniczności biosorpcji Cr(III) przez biomasę OC i jej spadku wraz ze wzrostem temperatury. Ujemna wartość entalpii (ΔH0) i entropii (ΔS0) wskazywała na egzotermiczność procesu i ograniczenie stopni swobody jonów Cr(III) na powierzchni międzyfazowej roztwór/biosorbent. Analiza FT-IR wykazała udział grup karboksylanowych w biosorpcji Cr(III) przez OC.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
337--346
Opis fizyczny
Bibliogr. 25 poz., wykr., tab.
Twórcy
autor
- Independent Department of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6a, 40–035 Opole, Poland, phone: +48 77 401 60 55
autor
- Independent Department of Biotechnology and Molecular Biology, University of Opole, ul. kard. B. Kominka 6a, 40–035 Opole, Poland, phone: +48 77 401 60 55
Bibliografia
- [1] Dilek FB, Gokcay CF, Yetis U. Combined effects of Ni(II) and Cr(VI) on activated sludge. Water Res. 1998;32(2):303-312. DOI: 10.1016/S0043-1354(97)00225-X.
- [2] Bernardo GRR, Rene R-NJ, Catalina A-DTM. Chromium (III) uptake by agro-waste biosorbents: Chemical characterization sorption-desorption studies, and mechanism. J Hazard Mater. 2009;3:845-854. DOI: 10.1016/j.hazmat.2009.05.046.
- [3] Benaďssa H, Elouchdi MA. Biosorption od copper (II) ions from synthetic aqueous solutions by drying bed activated sludge. J Hazard Mater. 2011;194:69-78. DOI: 10.1016/j.hazmat.2011.07.063.
- [4] Aksu Z, Acikel U, Kabasakal E, Tezer S. Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res. 2002;36(12):3063-3073. DOI: 10.1016/S0043-1354(01)00530-9.
- [5] Kiliç M, Keskin ME, Mazlum S, Mazlum N. Effect of conditioning for Pb(II) and Hg(II) biosorption on waste activated sludge. Chem Eng Process. 2008:47(1):31-40. DOI: 10.1016/j.cep.2007.07.019.
- [6] Langmuir I. The adsorption of glasses on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361-1403. DOI: 10.1021/ja02242a004.
- [7] Freundlich HMF. Over the Adsorption in Solution. Zeitschrift fur Physikalische Chemie. 1906;57:385-470.
- [8] Lagergren S. Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898;24(4):1-39.
- [9] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process. Biochem. 1999;34:451-465. http://dx.doi.org/10.1016/S0032-9592(98)00112-5.
- [10] Bueno BYM, Torem ML, de Carvalho TJ, Pino GAH, de Mesquita LMS. Fundamental aspects of biosorption of lead (II) ions onto a Rhodococcus opacus strain for environmental applications. Miner Eng. 2011;24:1619-1624. DOI: 10.1016/j.mineng.2011.08.018.
- [11] Sassi M, Bestani B, Said AH, Benderdouche N, Guibal E. Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant. Desalination. 2010;262:243-250. DOI: 10.1016/j.desal.2010.06.022.
- [12] Gulnaz O, Kaya A, Dincer S. The reuse of dried activated sludge for adsorption of reactive dye. J Hazard Mater. 2006:B134:190-196. DOI: 10.1016/j.jhazmat.2005.10.050.
- [13] Chojnacka K, Biosorption of Cr(III) ions by eggshells. J Hazard Mater. 2005;B121:167-173. DOI: 10.1016/j.hazmat.2005.02.004.
- [14] Uluozlu OD, Sari A, Tuzen M, Soylak M. Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresour Technol. 2008;99:2972-2980. DOI: 10.1016/j.biortech.2007.06.052.
- [15] Blázquez G, Hernáinz F, Caleo M, Martín-Lara MA, Tenorio G, The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone. Chem Eng J. 2009;148:473-479. DOI: 10.1016/j.cej.2008.09.026.
- [16] Iddou A, Ouali MS. Waste-activated sludge (WAS) as Cr(III) sorbent biosolid from wastewater effluent. Colloid Surfac B. 2008; 66:240-245. DOI: 10.1016/j..colsurfb.2008.06.018.
- [17] Yao Q, Zhang H, Wu J, Shao L, He P. Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies. Front Environ Sci Eng. 2010;4(3):286-294. DOI: 10.1007/s11783-010-0035-4.
- [18] Bishnoi NR, Kumar R, Kumar S, Rani S. Biosorption of Cr(III) from aqueous solution using algal biomass spirogyra spp.. J Hazard Mater. 2007;145:142-147. DOI: 10.1016/j.jhazmat.2006.10.093.
- [19] Witek-Krowiak A, Reddy DHK. Removal of microelemental Cr(III) and Cu(II) by using soybean meal waste - Unusual isotherms and insights of binding mechanism. Bioresour Technol. 2013;127:350-357. http://dx.doi.org/10.1016/j.biortech.2012.09.072.
- [20] Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling. Biochem Eng J. 2001;7:79-84. http://dx.doi.org/10.1016/S1369-703X(00)00098-X.
- [21] Gulnaz O, Saygideger S, Kusvuran E. Study of Cu(II) biosorption by dried activated sludge: effect of physico-chemical environmental and kinetics study. J Hazard Mater. 2005;B120:193-200. DOI: 10.1016/j.jhazmat.2005.01.003.
- [22] Horsfall M, Spiff A.I.. Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild cocoyam) biomass. Electron J Biotechn. 2005;8(2):162-169. DOI: 10.2225/vol8-issue2-fulltext-4.
- [23] Iftikhar AR, Bhatti HN, Hanif MA, Nadeem R. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass. J Hazard Mater. 2009;161:941-947. DOI: 10.1016/j.jhazmat.2008.04.040.
- [24] Choi SB, Yun Y-S. Biosorption of cadmium by various types of dried sludge: An equilibrium study and investigation of mechanisms. J Hazard Mater. 2006;B138:378-383. DOI: 10.1016/j.jhazmat.2006.05.059.
- [25] Ashkenazy R, Gottlieb L, Yannai S. Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption, Biotechnol Bioeng. 1997;55(1):1-10. DOI: 10.1002/(SICI)1097-0290(19970705)55:1<1::AID-BIT1>3.0.CO;2-H.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e18d0690-e7b3-4548-8521-04fc51ea6b9a