PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Device for interim check of coordinate measuring machines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new interim check device for coordinate measuring machines (CMMs) built from an AISI 1020 carbon steel bar with the incorporation of calibrated spheres. This artifact’s construction was made to make the interim checks of machines of this type faster and cheaper. Three devices were designed based on the ISO 10360-2 standard, the good practice guide No. 42 (NPL), and prominent authors’ research on the subject. The three options are presented in detail, but only one was built due to budget, size, and adaptability restrictions. An exploratory study was conducted to verify the device’s usability in two CMMs and concluded that the differences between the measurements are not significant. However, one machine had absolute variation values and a total standard deviation higher than the other, generating a larger expanded uncertainty.
Słowa kluczowe
Rocznik
Strony
143--158
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
  • Federal University of Santa Maria, Department of Production Engineering and Systems, Roraima Avenue, 1000, Santa Maria, Brazil
  • Federal University of Santa Maria, Department of Production Engineering and Systems, Roraima Avenue, 1000, Santa Maria, Brazil
  • State University of Santa Catarina, Department of Industrial Technology, Fernando Hastreiter Street, São Bento do Sul, Brazil
  • Federal University of Santa Maria, Statistics Department, Roraima Avenue, 1000, Santa Maria, Brazil
  • Federal University of Santa Maria, Department of Production Engineering and Systems, Roraima Avenue, 1000, Santa Maria, Brazil
Bibliografia
  • [1] Fanton, J. P. (2019). A brief history of metrology: past, present, and future. International Journal of Metrology and Quality Engineering, 10, 5. https://doi.org/10.1051/ijmqe/2019005
  • [2] Hocken, R. J., & Pereirá, P. H. (Eds.). (2016). Coordinate measuring machines and systems. CRC Press, Taylor & Francis Group.
  • [3] Cuesta, E., Alvarez, B., Sanchez-Lasheras, F., & Gonzalez-Madruga, D. (2015). A statistical approach to prediction of the CMM drift behaviour using a calibrated mechanical artefact. Metrology and Measurement Systems, 22(3), 417-428. https://doi.org/10.1515/mms-2015-0033
  • [4] De Aquino Silva, J. B., Hocken, R. J., Miller, J. A., Caskey, G. W., & Ramu, P. (2009). Approach for uncertainty analysis and error evaluation of four-axis co-ordinate measuring machines. The International Journal of Advanced Manufacturing Technology, 41, 1130-1139. https://doi.org/10.1007/s00170-008-1552-z
  • [5] De Aquino Silva, J. B., & Burdekin, M. (2002). A modular space frame tor assessing the performance of co-ordinate measuring machines (CMMs). Precision Engineering, 26(1), 37-48. https://doi.org/10.1016/S0141-6359(01)00096-4
  • [6] Wozniak, A., & Mayer, J. R. R. (2012). A robust method for probe tip radius correction in coordinate metrology. Measurement Science and Technology, 25(2), 025001. https://doi.org/10.1088/0957-0233/23/2/025001
  • [7] International Organization for Standardization and International Electrotechnical Commission. (2017). General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2017). https://www.iso.org/standard/66912.html
  • [8] International Organization of Legal Metrology. International vocabulary of metrology - Basic and general concepts and associated terms (VIM) (JCGM 200:2008).
  • [9] International Organization for Standardization. (2009). Geometrical product specifications (GPS) - Acceptance and reveriftcation tests for coordinate measuring machines (CMM) - Part 2: CMMs used for measuring linear dimensions (ISO 10360-2:2009). https://www.iso.org/standard/40954.html
  • [10] Flack, D. (2011). Measurement Good Practice Guide No. 42. CMM Verification. National Physical Laboratory.
  • [11] Arenhart, R. S., Pizzolato, M., Menin, P. L., & Hoch. L. (2021). Devices for interim check of coordinate measuring machines: a systematic review. MAPAN - Journal of Metrology Society of India, 36(1), 157-173. https://doi.org/10.1007/s12647-020-00406-0
  • [12] Automotive Industry Action Group (AIAG). (2010). Measurement Systems Analysis (MSA) - Reference Manual.
  • [13] Płowucha, W. (2018). Uncertainty of coordinate measurement of geometrical deviations. Procedia CIRP, 75, 361-366. https://doi.org/10.1016/j.procir.2018.04.071
  • [14] Płowucha, W. (2019). Point-straight line distance as model for uncertainty evaluation of coordinate measurement. Measurement, 135, 83-95. https://doi.org/10.1016/j.measurement.2018.11.008
  • [15] Sładek J. A. (2016). Coordinate metrology: accuracy of systems and measurements. Springer-Verlag, 55-382.
  • [16] Doiron, T. (2016). Dimensional measurement uncertainty from Data, part 2: uncertainty R&R. International Journal of Metrology. 25(3), 22-29.
  • [17] Koteras, R., Wieczorowski, M., & Znaniecki, P. (2018). Acceptance and reverification of CMM in industrial conditions. Advances in Science and Technology. Research Journal, 12(1), 80-88. https://doi.org/10.12913/2998624/80987
  • [18] Bartscher, M., Hilpert, U., Goebbles, J., & Weidemann, G. (2007). Enhancement and proof of accuracy of industrial computed tomography (CT) measurements. CIRP Annals. 56(1), 495-498. https://doi.org/10.1016/j.cirp.2007.05.118
  • [19] Swornowski, P. J. (2014). A new concept of continuous measurement and error correction in Coordinate Measuring Technique using a PC. Measurement, 50, 99-105. https://doi.org/10.1016/j.measurement.2013.12.032
  • [20] Montgomery, D. C. & Runger, G. C. (2018). Applied Statistics and Probability for Engineers. John Wiley & Sons, Inc.
  • [21] Sharpe, N., De Veux, R. & Velleman, P. (2010). Business Statistics. Pearson Education, Inc.
  • [22] Cywiak, M., Cywiak, D., & Yáñez, E. (2020). Two-way ANOVA gage R&R working example applied to speckle intensity statistics due to different random vertical surface roughness characteristics using the Fresnel diffraction integral. Metrology and Measurement Systems, 27(1), 103 117. https://doi.org/10.24425/mms.2020.131715
  • [23] Beckert, S. F., Paim, & W. S. (2017). Critical analysis of the acceptance criteria used in measurement systems evaluation. International Journal of Metrology and Quality Engineering, 8(23), 1-9. https://doi.org/10.1051/ijmqe/2017016
  • [24] Montgomery, D. C. (2013). Introduction to Statistical Quality Control. John Wiley & Sons. Inc.
  • [25] Jing, G. G. (2018). How to measure test repeatability when stability and constant variance are not observed. International Journal of Metrology and Quality Engineering, 9(10), 1-9. https://doi.org/10.1051/ijmqe/2018007
  • [26] Arenhart, R. S., Pizzolato, M. (2020). Analise de Sistemas de Medição em uma Máquina de Medir por Coordenadas / Measurement System Analysis on a Coordinate Measuring Machine. Revista FSA, 17(6), 182-203.
  • [27] Jurkowski, S. (2019). Application of the R&R method to determine the operator’s influence on measurements made with a coordinate measuring arm. Archive of Mechanical Engineering, 66(1), 73-81. https://doi.org/10.24425/ame.2019.126372
  • [28] International Organization tor Standardization and International Electrotechnical Commission. (2008). Uncertainly of measurement. Part 3: Guide to the expression of uncertainly in measurement (GUM:1995) (TSO/IEC GUIDE 98-3:2008). https://www.iso.org/standard/50461.html
Uwagi
1. This work was supported by the Brazilian National Research and Development Council (CNPq) and the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES). We are grateful for the comments and suggestions of three anonymous referees that have increased the quality of the work and indicated possible paths for further research.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e18c62c8-5e63-4bf9-8466-93ab839b132a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.