Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work deals with determining of lattice parameters (not present in the literature till now) in the temperature range of 295–1473 K for tetragonal zirconia polycrystals, stabilized with 3 mol.% of yttria and for corundum (α-Al2O3). Basing on lattice parameters changes with temperature, thermal expansion coefficients for 3Y-TZP and α-Al2O3 monocrystals along a and c crystallographic axis were determined. The calculated values of axial coefficients of thermal expansion were used for creation of a micromechanical model for simulation of thermal expansion of materials, constituting the real microstructures of composites from 3Y-TZP/α-Al2O3. The results of simulations were compared with thermals expansion coefficients, determined by dilatometric measurements and performed for real composites.
Czasopismo
Rocznik
Tom
Strony
188--197
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] S. Deville, J. Chevalier, C. Dauvergne, G. Fantozzi, J.F. Bartolomé, J.S. Moya, et al., Microstructural investigation of the aging behavior of (3Y-TZP)-Al2O3 composites, Journal of the American Ceramic Society 88 (2005) 1273–1280, http://dx. doi.org/10.1111/j.1551-2916.2005.00221.x.
- [2] J. Chevalier, P. Taddei, L. Gremillard, S. Deville, G. Fantozzi, J.F. Bartolomé, et al., Reliability assessment in advanced nanocomposite materials for orthopaedic applications, Journal of the Mechanical Behavior of Biomedical Materials 4 (2011) 303–314.
- [3] Y. Chang, R. Bermejo, O. Ševeček, G.L. Messing, Design of alumina-zirconia composites with spatially tailored strength and toughness, Journal of the European Ceramic Society 35 (2015) 631–640.
- [4] Z. Zhou, Z. Wang, Y. Yi, J. Lan, Tribological characteristics in dry friction environment of Zirconia–Alumina composites with or without layered structure, Ceramics International 40 (2014) 13139–13144.
- [5] L. Gremillard, L. Martin, L. Zych, E. Crosnier, J. Chevalier, A. Charbouillot, et al., Combining ageing and wear to assess the durability of zirconia-based ceramic heads for total hip arthroplasty, Acta Biomaterialia 9 (2013) 7545–7555, http:// dx.doi.org/10.1016/j.actbio.2013.03.030.
- [6] A.H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of zirconia toughened alumina ceramics for joint prostheses, Key Engineering Materials 206–213 (2002) 1535–1538.
- [7] K. Kim, J. Geringer, D.D. Macdonald, Crack simulation of nano-bioceramic composite microstructures with cohesive failure law: effects of sintering, loads and time, Journal of the Mechanical Behavior of Biomedical Materials 15 (2012) 1–12.
- [8] I. Denry, J.A. Holloway, Ceramics for dental applications: a review, Materials (Basel) 3 (2010) 351–368, http://dx.doi.org/ 10.3390/ma3010351.
- [9] R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel? Nature 258 (1975) 703–704, http://dx.doi.org/10.1038/258703a0.
- [10] B. Basu, Toughening of yttria-stabilised tetragonal zirconia ceramics, International Materials Reviews 50 (2005) 239–256.
- [11] F. Kern, R. Gadow, Alumina toughened zirconia from yttria coated powders, Journal of the European Ceramic Society 32 (2012) 3911–3918.
- [12] Q. Ma, W. Pompe, J.D. French, D.R. Clarke, Residual stresses in Al2O3-ZrO2 composites: a test of stochastic stress models, Acta Metallurgica et Materialia 42 (1994) 1673–1681, http://dx. doi.org/10.1016/0956-7151(94)90377-8.
- [13] E. Merlani, C. Schmid, V. Sergo, Residual stresses in alumina/ zirconia composites: effect of cooling rate and grain size, Journal of the American Ceramic Society 84 (2001) 2962–2968.
- [14] V. Sergo, G. Pezzotti, O. Sbaizero, T. Nishida, Grain size influence on residual stresses in alumina/zirconia composites, Acta Materialia 46 (1998) 1701–1710, http://dx. doi.org/10.1016/S1359-6454(97)00348-0.
- [15] L. Perrière, R. Valle, N. Carrère, G. Gouadec, P. Colomban, S. Lartigue-Korinek, et al., Crack propagation and stress distri- bution in binary and ternary directionally solidified eutectic ceramics, Journal of the European Ceramic Society 31 (2011) 1199–1210.
- [16] C. Berdin, Z.Y. Yao, S. Pascal, Internal stresses in polycrystalline zirconia: microstructure effects, Computational Materials Science 70 (2013) 140–144, http:// dx.doi.org/10.1016/j.commatsci.2012.12.019.
- [17] C.R. Chen, S.X. Li, Q. Zhang, Finite element analysis of stresses associated with transformations in magnesia partially stabilized zirconia, Materials Science and Engineering A 272 (1999) 398–409, http://dx.doi.org/10.1016/ S0921-5093(99)00507-9.
- [18] P. Platt, P. Frankel, M. Gass, R. Howells, M. Preuss, Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys, Journal of Nuclear Materials 454 (2014) 290–297, http://dx. doi.org/10.1016/j.jnucmat.2014.08.020.
- [19] G. Grabowski, Z. Pędzich, Residual stresses in particulate composites with alumina and zirconia matrices, Journal of the European Ceramic Society 27 (2007) 1287–1292, http://dx. doi.org/10.1016/j.jeurceramsoc.2006.04.096.
- [20] K. Tsukuma, Y. Kubota, K. Nobugai, Thermal and mechanical properties of Y2O3-partially stabilized zirconia, Journal of the Ceramic Association, Japan 92 (1984) 233–241, http://dx.doi. org/10.2109/jcersj1950.92.1065_233.
- [21] H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics 176 (2005) 613–619.
- [22] R.P. Ingel, D. Lewis, Lattice parameters and density for Y2O3- Stabilized ZrO2, Journal of the American Ceramic Society 69 (1986) 325–332.
- [23] S.M. Lang, Axial thermal expansion of tetragonal ZrO, between 11508 and 1700 8C, Journal of the American Ceramic Society 47 (1964) 641–644, http://dx.doi.org/10.1111/ j.1151-2916.1964.tb13125.x.
- [24] R.N. Patil, E.C. Subbarao, Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400 8C, Journal of Applied Crystallography 2 (1969) 281–288, http://dx.doi.org/ 10.1107/S0021889869007217.
- [25] D. Simeone, G. Baldinozzi, D. Gosset, M. Dutheil, A. Bulou, T. Hansen, Monoclinic to tetragonal semireconstructive phase transition of zirconia, Physics Review B 67 (2003) 64111.
- [26] N. Igawa, Y. Ishii, Crystal structure of metastable tetragonal zirconia up to 1473 K, Journal of the American Ceramic Society 84 (2001) 1169–1171.
- [27] G. Balakrishnan, P. Kuppusami, S. Murugesan, E. Mohandas, D. Sastikumar, High temperature X-ray diffraction studies of zirconia thin films prepared by reactive pulsed laser deposition, Crystal Research and Technology 47 (2012) 415– 422.
- [28] R.P. Haggerty, P. Sarin, Z.D. Apostolov, P.E. Driemeyer, W.M. Kriven, Thermal expansion of HfO2 and ZrO2, Journal of the American Ceramic Society 97 (2014) 2213–2222, http://dx.doi. org/10.1111/jace.12975.
- [29] H. Schubert, Anisotropic thermal expansion coefficients of Y2O3-stabilized tetragonal zirconia, Journal of the American Ceramic Society 69 (1986) 270–271, http://dx.doi.org/10.1111/ j.1151-2916.1986.tb07424.x.
- [30] R. Ochrombel, J. Schneider, B. Hildmann, B. Saruhan, Thermal expansion of EB-PVD yttria stabilized zirconia, Journal of the European Ceramic Society 30 (2010) 2491–2496, http://dx.doi. org/10.1016/j.jeurceramsoc.2010.05.008.
- [31] R.G. Munro, Evaluated material properties for a sintered alpha-alumina, Journal of the American Ceramic Society 80 (2005) 1919–1928.
- [32] V. Pishchik, L.A. Lytvynov, E.R. Dobrovinskaya, Sapphire, Springer Science+Business Media, 2009.
- [33] H. Chikh, F. Si-ahmed, A. Afir, A. Pialoux, In-situ X-ray diffraction study of alumina a-Al2O3 thermal behavior, International Journal of Recent Development in Engineering and Technology 3 (2014) 137–143.
- [34] G.K. White, M.L. Minges, Thermophysical properties of some key solids: an update, International Journal of Thermophysics 18 (1997) 1269–1327, http://dx.doi.org/ 10.1007/BF02575261.
- [35] J.F. Shackelford, W. Alexander, Materials Science and Engineering Handbook, 3rd ed., CRC Press, 2001.
- [36] A.N. Amatuni, T.I. Malyutina, V.Y. Chekhovskoi, V.A. Petukhov, Standard samples for dilatometry, High Temperatures-High Pressures 8 (1976) 565–570, http://inis. iaea.org/Search/search.aspx?orig_q=RN:9354490 (accessed 18.05.16).
- [37] G.K. White, Reference materials for thermal expansion: certified or not? Thermochimica Acta 218 (1993) 83–99.
- [38] V. Kouznetsova, W.A.M. Brekelmans, F.P.T. Baaijens, An approach to micro-macro modeling of heterogeneous materials, Computational Mechanics 27 (2001) 37–48, http:// dx.doi.org/10.1007/s004660000212.
- [39] S. Kurukuri, A Review of Homogenization Techniques for Heterogeneous Materials, Weimar, Germany, 2004.
- [40] J. Ptaszny, P. Fedelińnaski, Numerical homogenization by using the fast multipole boundary element method, Archives of Civil and Mechanical Engineering 11 (2011) 181–193, http:// dx.doi.org/10.1016/S1644-9665(12)60182-4.
- [41] H. Song, R.L. Coble, Morphology of platelike abnormal grains in liquid-phase-sintered alumina, Journal of the American Ceramic Society 73 (1990) 2086–2090, http://dx.doi.org/ 10.1111/j.1151-2916.1990.tb05272.x.
- [42] G.C. Ndubuisi, J. Liu, J.M. Cowley, Characterization of the annealed (0001) surface of sapphire (alpha-Al2O3) and interaction with silver by reflection electron microscopy and scanning reflection electron microscopy, Microscopy Research and Technique 20 (1992) 439–449, http://dx.doi.org/ 10.1002/jemt.1070200413.
- [43] J.F. Nye, Physical Properties of Crystals, Oxford University Press Inc., Oxford, 1985.
- [44] T. Goto, O.L. Anderson, I. Ohno, S. Yamamoto, Elastic constants of corundum up to 1825 K, Journal of Geophysical Research 94 (1989) 7588.
- [45] M. Fukuhara, I. Yamauchi, Temperature dependence of the elastic moduli, dilational and shear internal frictions and acoustic wave velocity for alumina, (Y)TZP and b-sialon ceramics, Journal of Materials Science 28 (1993) 4681–4688, http://dx.doi.org/10.1007/BF00414258.
- [46] E.Y. Fogaing, Y. Lorgouilloux, M. Huger, C.P. Gault, Young's modulus of zirconia at high temperature, Journal of Materials Science 41 (2006) 7663–7666.
- [47] Y.X. Ma, E.H. Kisi, S.J. Kennedy, Neutron diffraction study of ferroelasticity in a 3 mol% Y2O3-ZrO2, Journal of the American Ceramic Society 84 (2001) 399–405, http://dx.doi.org/10.1111/ j.1151-2916.2001.tb00668.x.
- [48] C. Hillman, Z. Suo, F.F. Lange, Cracking of laminates subjected to biaxial tensile stresses, Journal of the American Ceramic Society 79 (1996) 2127–2133, http://dx.doi. org/10.1111/j.1151-2916.1996.tb08946.x.
- [49] J. Ramírez-Rico, J. Martínez-Fernandez, J.I. Peña, D. Singh, J. Routbort, Residual stresses in Al2O3–ZrO2 (3 mol.% Y2O3) directionally solidified eutectic ceramics as a function of temperature, Materials Science and Engineering A 541 (2012) 61–66.
- [50] K. Terada, M. Hori, T. Kyoya, N. Kikuchi, Simulation of the multi-scale convergence in computational homogenization approaches, International Journal of Solids and Structures 37 (2000) 2285–2311, http://dx.doi.org/10.1016/S0020-7683(98) 00341-2.
- [51] C. Karch, Micromechanical analysis of thermal expansion coefficients, Modeling and Numerical Simulation of Material Science 4 (2014) 104–118, http://dx.doi.org/10.4236/ mnsms.2014.43012.
- [52] J. Szyndler, L. Madej, Effect of number of grains and boundary conditions on digital material representation deformation under plane strain, Archives of Civil and Mechanical Engineering 14 (2014) 360–369.
- [53] C.J. Howard, R.J. Hill, B.E. Reichert, Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction, Acta Crystallographica Section B: Structural Science 44 (1988) 116–120, http://dx.doi.org/ 10.1107/S0108768187010279.
- [54] R.W. Rice, Porosity of Ceramics, Marcel Dekker, Inc., 1998.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e186d649-e5e5-4f93-b6d7-7121b87a0e19