PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anisotropy of thermal expansion of 3Y-TZP, α-Al2O3 and composites from 3Y-TZP/α-Al2O3 system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work deals with determining of lattice parameters (not present in the literature till now) in the temperature range of 295–1473 K for tetragonal zirconia polycrystals, stabilized with 3 mol.% of yttria and for corundum (α-Al2O3). Basing on lattice parameters changes with temperature, thermal expansion coefficients for 3Y-TZP and α-Al2O3 monocrystals along a and c crystallographic axis were determined. The calculated values of axial coefficients of thermal expansion were used for creation of a micromechanical model for simulation of thermal expansion of materials, constituting the real microstructures of composites from 3Y-TZP/α-Al2O3. The results of simulations were compared with thermals expansion coefficients, determined by dilatometric measurements and performed for real composites.
Rocznik
Strony
188--197
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] S. Deville, J. Chevalier, C. Dauvergne, G. Fantozzi, J.F. Bartolomé, J.S. Moya, et al., Microstructural investigation of the aging behavior of (3Y-TZP)-Al2O3 composites, Journal of the American Ceramic Society 88 (2005) 1273–1280, http://dx. doi.org/10.1111/j.1551-2916.2005.00221.x.
  • [2] J. Chevalier, P. Taddei, L. Gremillard, S. Deville, G. Fantozzi, J.F. Bartolomé, et al., Reliability assessment in advanced nanocomposite materials for orthopaedic applications, Journal of the Mechanical Behavior of Biomedical Materials 4 (2011) 303–314.
  • [3] Y. Chang, R. Bermejo, O. Ševeček, G.L. Messing, Design of alumina-zirconia composites with spatially tailored strength and toughness, Journal of the European Ceramic Society 35 (2015) 631–640.
  • [4] Z. Zhou, Z. Wang, Y. Yi, J. Lan, Tribological characteristics in dry friction environment of Zirconia–Alumina composites with or without layered structure, Ceramics International 40 (2014) 13139–13144.
  • [5] L. Gremillard, L. Martin, L. Zych, E. Crosnier, J. Chevalier, A. Charbouillot, et al., Combining ageing and wear to assess the durability of zirconia-based ceramic heads for total hip arthroplasty, Acta Biomaterialia 9 (2013) 7545–7555, http:// dx.doi.org/10.1016/j.actbio.2013.03.030.
  • [6] A.H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of zirconia toughened alumina ceramics for joint prostheses, Key Engineering Materials 206–213 (2002) 1535–1538.
  • [7] K. Kim, J. Geringer, D.D. Macdonald, Crack simulation of nano-bioceramic composite microstructures with cohesive failure law: effects of sintering, loads and time, Journal of the Mechanical Behavior of Biomedical Materials 15 (2012) 1–12.
  • [8] I. Denry, J.A. Holloway, Ceramics for dental applications: a review, Materials (Basel) 3 (2010) 351–368, http://dx.doi.org/ 10.3390/ma3010351.
  • [9] R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel? Nature 258 (1975) 703–704, http://dx.doi.org/10.1038/258703a0.
  • [10] B. Basu, Toughening of yttria-stabilised tetragonal zirconia ceramics, International Materials Reviews 50 (2005) 239–256.
  • [11] F. Kern, R. Gadow, Alumina toughened zirconia from yttria coated powders, Journal of the European Ceramic Society 32 (2012) 3911–3918.
  • [12] Q. Ma, W. Pompe, J.D. French, D.R. Clarke, Residual stresses in Al2O3-ZrO2 composites: a test of stochastic stress models, Acta Metallurgica et Materialia 42 (1994) 1673–1681, http://dx. doi.org/10.1016/0956-7151(94)90377-8.
  • [13] E. Merlani, C. Schmid, V. Sergo, Residual stresses in alumina/ zirconia composites: effect of cooling rate and grain size, Journal of the American Ceramic Society 84 (2001) 2962–2968.
  • [14] V. Sergo, G. Pezzotti, O. Sbaizero, T. Nishida, Grain size influence on residual stresses in alumina/zirconia composites, Acta Materialia 46 (1998) 1701–1710, http://dx. doi.org/10.1016/S1359-6454(97)00348-0.
  • [15] L. Perrière, R. Valle, N. Carrère, G. Gouadec, P. Colomban, S. Lartigue-Korinek, et al., Crack propagation and stress distri- bution in binary and ternary directionally solidified eutectic ceramics, Journal of the European Ceramic Society 31 (2011) 1199–1210.
  • [16] C. Berdin, Z.Y. Yao, S. Pascal, Internal stresses in polycrystalline zirconia: microstructure effects, Computational Materials Science 70 (2013) 140–144, http:// dx.doi.org/10.1016/j.commatsci.2012.12.019.
  • [17] C.R. Chen, S.X. Li, Q. Zhang, Finite element analysis of stresses associated with transformations in magnesia partially stabilized zirconia, Materials Science and Engineering A 272 (1999) 398–409, http://dx.doi.org/10.1016/ S0921-5093(99)00507-9.
  • [18] P. Platt, P. Frankel, M. Gass, R. Howells, M. Preuss, Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys, Journal of Nuclear Materials 454 (2014) 290–297, http://dx. doi.org/10.1016/j.jnucmat.2014.08.020.
  • [19] G. Grabowski, Z. Pędzich, Residual stresses in particulate composites with alumina and zirconia matrices, Journal of the European Ceramic Society 27 (2007) 1287–1292, http://dx. doi.org/10.1016/j.jeurceramsoc.2006.04.096.
  • [20] K. Tsukuma, Y. Kubota, K. Nobugai, Thermal and mechanical properties of Y2O3-partially stabilized zirconia, Journal of the Ceramic Association, Japan 92 (1984) 233–241, http://dx.doi. org/10.2109/jcersj1950.92.1065_233.
  • [21] H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents, Solid State Ionics 176 (2005) 613–619.
  • [22] R.P. Ingel, D. Lewis, Lattice parameters and density for Y2O3- Stabilized ZrO2, Journal of the American Ceramic Society 69 (1986) 325–332.
  • [23] S.M. Lang, Axial thermal expansion of tetragonal ZrO, between 11508 and 1700 8C, Journal of the American Ceramic Society 47 (1964) 641–644, http://dx.doi.org/10.1111/ j.1151-2916.1964.tb13125.x.
  • [24] R.N. Patil, E.C. Subbarao, Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400 8C, Journal of Applied Crystallography 2 (1969) 281–288, http://dx.doi.org/ 10.1107/S0021889869007217.
  • [25] D. Simeone, G. Baldinozzi, D. Gosset, M. Dutheil, A. Bulou, T. Hansen, Monoclinic to tetragonal semireconstructive phase transition of zirconia, Physics Review B 67 (2003) 64111.
  • [26] N. Igawa, Y. Ishii, Crystal structure of metastable tetragonal zirconia up to 1473 K, Journal of the American Ceramic Society 84 (2001) 1169–1171.
  • [27] G. Balakrishnan, P. Kuppusami, S. Murugesan, E. Mohandas, D. Sastikumar, High temperature X-ray diffraction studies of zirconia thin films prepared by reactive pulsed laser deposition, Crystal Research and Technology 47 (2012) 415– 422.
  • [28] R.P. Haggerty, P. Sarin, Z.D. Apostolov, P.E. Driemeyer, W.M. Kriven, Thermal expansion of HfO2 and ZrO2, Journal of the American Ceramic Society 97 (2014) 2213–2222, http://dx.doi. org/10.1111/jace.12975.
  • [29] H. Schubert, Anisotropic thermal expansion coefficients of Y2O3-stabilized tetragonal zirconia, Journal of the American Ceramic Society 69 (1986) 270–271, http://dx.doi.org/10.1111/ j.1151-2916.1986.tb07424.x.
  • [30] R. Ochrombel, J. Schneider, B. Hildmann, B. Saruhan, Thermal expansion of EB-PVD yttria stabilized zirconia, Journal of the European Ceramic Society 30 (2010) 2491–2496, http://dx.doi. org/10.1016/j.jeurceramsoc.2010.05.008.
  • [31] R.G. Munro, Evaluated material properties for a sintered alpha-alumina, Journal of the American Ceramic Society 80 (2005) 1919–1928.
  • [32] V. Pishchik, L.A. Lytvynov, E.R. Dobrovinskaya, Sapphire, Springer Science+Business Media, 2009.
  • [33] H. Chikh, F. Si-ahmed, A. Afir, A. Pialoux, In-situ X-ray diffraction study of alumina a-Al2O3 thermal behavior, International Journal of Recent Development in Engineering and Technology 3 (2014) 137–143.
  • [34] G.K. White, M.L. Minges, Thermophysical properties of some key solids: an update, International Journal of Thermophysics 18 (1997) 1269–1327, http://dx.doi.org/ 10.1007/BF02575261.
  • [35] J.F. Shackelford, W. Alexander, Materials Science and Engineering Handbook, 3rd ed., CRC Press, 2001.
  • [36] A.N. Amatuni, T.I. Malyutina, V.Y. Chekhovskoi, V.A. Petukhov, Standard samples for dilatometry, High Temperatures-High Pressures 8 (1976) 565–570, http://inis. iaea.org/Search/search.aspx?orig_q=RN:9354490 (accessed 18.05.16).
  • [37] G.K. White, Reference materials for thermal expansion: certified or not? Thermochimica Acta 218 (1993) 83–99.
  • [38] V. Kouznetsova, W.A.M. Brekelmans, F.P.T. Baaijens, An approach to micro-macro modeling of heterogeneous materials, Computational Mechanics 27 (2001) 37–48, http:// dx.doi.org/10.1007/s004660000212.
  • [39] S. Kurukuri, A Review of Homogenization Techniques for Heterogeneous Materials, Weimar, Germany, 2004.
  • [40] J. Ptaszny, P. Fedelińnaski, Numerical homogenization by using the fast multipole boundary element method, Archives of Civil and Mechanical Engineering 11 (2011) 181–193, http:// dx.doi.org/10.1016/S1644-9665(12)60182-4.
  • [41] H. Song, R.L. Coble, Morphology of platelike abnormal grains in liquid-phase-sintered alumina, Journal of the American Ceramic Society 73 (1990) 2086–2090, http://dx.doi.org/ 10.1111/j.1151-2916.1990.tb05272.x.
  • [42] G.C. Ndubuisi, J. Liu, J.M. Cowley, Characterization of the annealed (0001) surface of sapphire (alpha-Al2O3) and interaction with silver by reflection electron microscopy and scanning reflection electron microscopy, Microscopy Research and Technique 20 (1992) 439–449, http://dx.doi.org/ 10.1002/jemt.1070200413.
  • [43] J.F. Nye, Physical Properties of Crystals, Oxford University Press Inc., Oxford, 1985.
  • [44] T. Goto, O.L. Anderson, I. Ohno, S. Yamamoto, Elastic constants of corundum up to 1825 K, Journal of Geophysical Research 94 (1989) 7588.
  • [45] M. Fukuhara, I. Yamauchi, Temperature dependence of the elastic moduli, dilational and shear internal frictions and acoustic wave velocity for alumina, (Y)TZP and b-sialon ceramics, Journal of Materials Science 28 (1993) 4681–4688, http://dx.doi.org/10.1007/BF00414258.
  • [46] E.Y. Fogaing, Y. Lorgouilloux, M. Huger, C.P. Gault, Young's modulus of zirconia at high temperature, Journal of Materials Science 41 (2006) 7663–7666.
  • [47] Y.X. Ma, E.H. Kisi, S.J. Kennedy, Neutron diffraction study of ferroelasticity in a 3 mol% Y2O3-ZrO2, Journal of the American Ceramic Society 84 (2001) 399–405, http://dx.doi.org/10.1111/ j.1151-2916.2001.tb00668.x.
  • [48] C. Hillman, Z. Suo, F.F. Lange, Cracking of laminates subjected to biaxial tensile stresses, Journal of the American Ceramic Society 79 (1996) 2127–2133, http://dx.doi. org/10.1111/j.1151-2916.1996.tb08946.x.
  • [49] J. Ramírez-Rico, J. Martínez-Fernandez, J.I. Peña, D. Singh, J. Routbort, Residual stresses in Al2O3–ZrO2 (3 mol.% Y2O3) directionally solidified eutectic ceramics as a function of temperature, Materials Science and Engineering A 541 (2012) 61–66.
  • [50] K. Terada, M. Hori, T. Kyoya, N. Kikuchi, Simulation of the multi-scale convergence in computational homogenization approaches, International Journal of Solids and Structures 37 (2000) 2285–2311, http://dx.doi.org/10.1016/S0020-7683(98) 00341-2.
  • [51] C. Karch, Micromechanical analysis of thermal expansion coefficients, Modeling and Numerical Simulation of Material Science 4 (2014) 104–118, http://dx.doi.org/10.4236/ mnsms.2014.43012.
  • [52] J. Szyndler, L. Madej, Effect of number of grains and boundary conditions on digital material representation deformation under plane strain, Archives of Civil and Mechanical Engineering 14 (2014) 360–369.
  • [53] C.J. Howard, R.J. Hill, B.E. Reichert, Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction, Acta Crystallographica Section B: Structural Science 44 (1988) 116–120, http://dx.doi.org/ 10.1107/S0108768187010279.
  • [54] R.W. Rice, Porosity of Ceramics, Marcel Dekker, Inc., 1998.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e186d649-e5e5-4f93-b6d7-7121b87a0e19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.