PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust controller for cancer chemotherapy dosage using nonlinear kernel-based error function

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well-known that chemotherapy is the most significant method on curing the most death-causing disease like cancer. These days, the use of controller-based approach for finding the optimal rate of drug injection throughout the treatment has increased a lot. Under these circumstances, this paper establishes a novel robust controller that influences the drug dosage along with parameter estimation. A new nonlinear error functionbased extended Kalman filter (EKF) with improved scaling factor (NEF-EKF-ISF) is introduced in this research work. In fact, in the traditional schemes, the error is computed using the conventional difference function and it is deployed for the updating process of EKF. In our previous work, it has been converted to the nonlinear error function. Here, the updating process is based on the prior error function, though scaled to a nonlinear environment. In addition, a scaling factor is introduced here, which considers the historical error improvement, for the updating process. Finally, the performance of the proposed controller is evaluated over other traditional approaches, which implies the appropriate impact of drug dosage injection on normal, immune and tumor cells. Moreover, it is observed that the proposed NEF-EKF-ISF has the ability to evaluate the tumor cells with a better accuracy rate.
Rocznik
Strony
art. no. 20190056
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Electrical Engineering, SVNIT, Surat, India
  • Department of Electrical Engineering, SVNIT, Surat, India
Bibliografia
  • 1. Padmanabhan R, Meskin N, Haddad WM. Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment. Math Biosci 2017;293:11-20.
  • 2. Lai X, Friedman A. Mathematical modeling in scheduling cancer treatment with combination of VEGF inhibitor and chemotherapy drugs. J Theor Biol 2019;462:490-8.
  • 3. Wu X, Liu Q, Zhang K, Cheng M, Xin X. Optimal switching control for drug therapy process in cancer chemotherapy. Eur J Contr 2018;42:49-58.
  • 4. Liang L, Luo H, He Q, You Y, Liang J. Investigation of cancerassociated fibroblasts and p62 expression in oral cancer before and after chemotherapy. J Cranio-Maxillofacial Surg 2018;46: 605-10.
  • 5. Khalili P, Vatankhah R. Derivation of an optimal trajectory and nonlinear adaptive controller design for drug delivery in cancerous tumor chemotherapy. Comput Biol Med 2019;109: 195-206.
  • 6. Wang P, Liu R, Jiang Z, Yao Y, Shen Z. The optimization of combination chemotherapy schedules in the presence of drug resistance. IEEE Trans Autom Sci Eng 2019;16:165-79.
  • 7. Bazrafshan N, Lotfi MM. A multi-objective multi-drug model for cancer chemotherapy treatment planning: a cost-effective approach to designing clinical trials. Comput Chem Eng 2016;87: 226-33.
  • 8. Khadraoui S, Harrou F, Nounou HN, Nounou MN, Bhattacharyya SP. A measurement-based control design approach for efficient cancer chemotherapy. Inf Sci 2016;333:108-25.
  • 9. Batmani Y, Khaloozadeh H. Optimal drug regimens in cancer chemotherapy: a multi-objective approach. Comput Biol Med 2013;43:2089-95.
  • 10. Rokhforoz P, Jamshidi AA, Sarvestani NN. Adaptive robust control of cancer chemotherapy with extended Kalman filter observer. Inf Med Unlocked 2017;8:1-7.
  • 11. Chen T, Kirkby NF, Jena R. Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/ parameter estimation. Comput Methods Progr Biomed 2012;108: 973-83.
  • 12. Paryad-zanjani S, Mahjoob MJ, Amanpour S, Kheirbakhsh R, Akhoundzadeh MH. A supplemental treatment for chemotherapy: control simulation using a mathematical model with estimated parameters based on in vivo experiment. IFAC-Papers OnLine 2016;49:277-82.
  • 13. Pouchol C, Clairambault J, Alexander L, Trelat E. Asymptotic ´ analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J Math Pure Appl 2018;116:268-308.
  • 14. Matsuda C, Ishiguro M, Teramukai S, Kajiwara Y, Fujii S, Kinugasa Y, et al. A randomised-controlled trial of 1-year adjuvant chemotherapy with oral tegafur–uracil versus surgery alone in stage II colon cancer: SACURA trial. European Journal of Cancer 2018;96:54-63.
  • 15. Toyooka S, Okumura N, Nakamura H, Nakata M, Yamashita M, Tada H, et al. A multicenter randomized controlled study of paclitaxel plus carboplatin versus oral uracil-tegafur as the adjuvant chemotherapy in resected non–small cell lung cancer. J Thorac Oncol 2018;13:699-706.
  • 16. Wu H, Hu H, Wan J, Li Y, Wu Y, Tang Y, et al. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem Eng J 2018;349:129-45.
  • 17. Gibbons A, Groarke AM. Coping with chemotherapy for breast cancer: asking women what works. Eur J Oncol Nurs 2018;35: 85-91.
  • 18. Jiang S, Liu Y, Huang L, Zhang F, Kang R. Effects of propofol on cancer development and chemotherapy: potential mechanisms. Eur J Pharmacol 2018;831:46-51.
  • 19. Sun B, Luo C, Cui W, Sun J, He Z. Chemotherapy agentunsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J Contr Release 2017;264:145-59.
  • 20. Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Contr Release 2017; 267:100-18.
  • 21. Abbasian M, Roudi MM, Mahmoodzadeh F, Eskandani M, Jaymand M. Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. Int J Biol Macromol 2018;118:1871-9. Available online.
  • 22. Bao T, Seidman AD, Piulson L, Vertosick E, Chen X, Vickers AJ, et al. A phase IIA trial of acupuncture to reduce chemotherapyinduced peripheral neuropathy severity during neoadjuvant or adjuvant weekly paclitaxel chemotherapy in breast cancer patients. Eur J Canc 2018;101:12-19.
  • 23. Gretchen, Kimmick G, Li X, Fleming ST, Sabatino SA, Wilson JF, et al. Risk of cancer death by comorbidity severity and use of adjuvant chemotherapy among women with locoregional breast cancer. J Geriatric Oncol 2018;9:214-20.
  • 24. Kurt B, Kapucu S. The effect of relaxation exercises on symptom severity in patients with breast cancer undergoing adjuvant chemotherapy: an open label non-randomized controlled clinical trial. Eur J Integr Med 2018;22:54-61. Available online.
  • 25. Sun X, Zhang M, Du R, Zheng X, Tang C, Wu Y, et al. A polyethyleneimine-driven self-assembled nanoplatform for fluorescence and MR dual-mode imaging guided cancer chemotherapy. Chem Eng J 2018;350:69-78.
  • 26. Schattler H, Ledzewicz U. Optimal control for mathematical models of cancer therapies. Springer; 2010.
  • 27. Akhlaghi S, Zhou N, Huang Z. Adaptive adjustment of noise covariance in kalman filter for dynamic state estimation. Syst Contr 2017. https://doi.org/10.1109/PESGM.2017.8273755.
  • 28. Utkarsha. Non-linear kernel-based error function for extended kalman filter oriented robust control of cancer chemotherapy. In communication.
  • 29. Nasiri H, Kalat AA. Adaptive fuzzy back-stepping control of drug dosage regimen in cancer treatment. Biomed Signal Process Contr 2018;42:267-76.
  • 30. Sharifi M, Moradi H. Nonlinear composite adaptive control of cancer chemotherapy with online identification of uncertain parameters. Biomed Signal Process Contr 2019;49:360-74.
  • 31. Teles FF, Lemos JM. Cancer therapy optimization based on multiple model adaptive control. Biomed Signal Process Contr 2019;48:255-64.
  • 32. Zouari F, Ibeas A, Boulkroune A, Cao J, Arefi MM. Neuro-adaptive tracking control of non-integer order systems with input nonlinearities and time-varying output constraints. Inf Sci 2019; 485:170-99.
  • 33. Zouari F. Neural network based adaptive backstepping dynamic surface control of drug dosage regimens in cancer treatment. Neurocomputing 2019;366:248-63.
  • 34. Xuan W, You G. Detection and diagnosis of pancreatic tumor using deep learning-based hierarchical convolutional neural network on the internet of medical things platform. Future Generat Comput Syst 2020;111:132-42.
  • 35. Selvapandian A, Manivannan K. Fusion based Glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Progr Biomed 2018;166:33-8.
  • 36. Yazdjerdi P, Meskin N, Al-Naemi M, Moustafa A-EA, Kovács L. Reinforcement learning-based control of tumor growth under anti-angiogenic therapy. Comput Methods Progr Biomed 2019; 17:15-26.
  • 37. Beno MM, Rajakumar BR. Threshold prediction for segmenting tumour from brain MRI scans. Int J Imag Syst Technol 2014;24: 129-37.
  • 38. Fedele L. Design of organization and safety measures for the reclamation from friable asbestos of an industrial area in Italy; 2016.
  • 39. Jameel AS, Ahmad AR. The mediating role of job satisfaction between leadership style and performance of academic staff. Int J Psychosoc Rehabil 2020;24:2399-414.
  • 40. Cofini V, Carbonelli A, Cecilia MR, Di Orio, F. Quality of life, psychological wellbeing and resilience: a survey on the Italian population living in a new lodging after the earthquake of April 2009. 2014;26:46-51.
  • 41. Bonacaro A, Rubbi I, Sookhoo D. The use of wearable devices in preventing hospital readmission and in improving the quality of life of chronic patients in the homecare setting: a narrative literature review. Professioni infermieristiche 2019;72.
  • 42. Bonacaro A, Morgan L. Simulated mindfulness meditation: a major breakthrough in the management of chronic pain, 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1841d4d-0244-40f8-ae5f-3dfdf9580908
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.