Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Residual stress has a great influence on the mechanical behaviour of arterial wall. Numerous research groups used the Uniform Stress Hypothesis to allow the inclusion of the effects of residual stress when computing stress distributions in the arterial wall. Nevertheless, the available methods used for this purpose are very expensive, due to their iterative nature. In this paper we present a new method for including the effects of residual stress on the computed stress distribution in the arterial wall. Methods: The new method using the Uniform Stress Hypothesis enables computing the effect of residual stress by averaging stresses across the thickness of the arterial wall. Results: Being a post-processing method for the computed stress distributions, the proposed method is computationally inexpensive and, thus, better suited for clinical applications than the previously used ones. Conclusions: The resulting stress distributions and values obtained using the proposed method based on the Uniform Stress Hypothesis are very close to the ones returned by an existing iterative method.
Czasopismo
Rocznik
Tom
Strony
59--67
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth Australia
autor
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, Institute for in silico Medicine, Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK
autor
- Department of Applied Mechanics, VSB-Technical University Ostrava, Ostrava, Czech Republic
autor
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, Institute for in silico Medicine, Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK
autor
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth Australia
autor
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth Australia
- School of Engineering, Cardiff University, Cardiff, UK
Bibliografia
- [1] GASSER T.C., AUER M., LABRUTO F., SWEDENBORG J., ROY J., Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations, European Journal of Vascular and Endovascular Surgery, 2010, 40, 176–185, DOI: 10.1016/j.ejvs.2010.04.003.
- [2] FILLINGER M.F., RAGHAVAN M.L., MARRA S.P., CRONENWETT J.L., KENNEDY F.E., In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk, Journal of Vascular Surgery, 2002, 36, 589–597, DOI:10.1067/mva.2002.125478.
- [3] MARTUFI G., GASSER T.C., Review: The Role of Biomechanical Modeling in the Rupture Risk Assessment for Abdominal Aortic Aneurysms, Journal of Biomechanical Engineering, 2013, 135, 021010–021010–10, DOI: 10.1115/1.4023254.
- [4] RACHEV A., GREENWALD S., Residual strains in conduit arteries, Journal of Biomechanics, 2003, 36, 661–670, DOI:10.1016/S0021-9290(02)00444-X.
- [5] CALLAGHAN F.M., LUECHINGER R., KURTCUOGLU V., SARIKAYA H., POULIKAKOS D., BAUMGARTNER R.W., Wall stress of the cervical carotid artery in patients with carotid dissection: a case-control study, American Journal of Physiology. Heart and Circulatory Physiology, 2011, 300, H1451–8, DOI:10.1152/ajpheart.00871.2010.
- [6] CHUONG C.J., FUNG Y.C., On Residual Stresses in Arteries, Journal of Biomechanical Engineering, 1986, 108, 189–192.
- [7] TABER L.A., HUMPHREY J.D., Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity, Journal of Biomechanical Engineering, 2001, 123, 528–535, DOI: 10.1115/1.1412451.
- [8] PEÑA J.A., MARTÍNEZ M.A., PEÑA E., Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta, Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 55–69, DOI:10.1016/j.jmbbm.2015.05.024.
- [9] RAGHAVAN M.L., TRIVEDI S., NAGARAJ A., MCPHERSON D.D., CHANDRAN K.B., Three-dimensional finite element analysis of residual stress in arteries, Annals of Biomedical Engineering, 2004, 32, 257–263, DOI: 10.1023/B:ABME.0000012745.05794.32.
- [10] BALZANI D., SCHRÖDER J., GROSS D., Numerical simulation of residual stresses in arterial walls, Computational Materials Science, 2007, 39, 117–123, DOI: 10.1016/j.commatsci.2005.11.014.
- [11] HORNY L., ADAMEK T., GULTOVA E., ZITNY R., VESELY J., CHLUP H., KONVICKOVA S., Correlations between age, prestrain, diameter and atherosclerosis in the male abdominal aorta, Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 2128–2132, DOI: 10.1016/j.jmbbm.2011.07.011.
- [12] AMBROSI D., GUILLOU A., DI MARTINO E.S., Stress-modulated remodeling of a non-homogeneous body, Biomechanics and Modeling in Mechanobiology, 2008, 7, 63–76, DOI:10.1007/s10237-007-0076-z.
- [13] POLZER S., BURSA J., GASSER T.C., STAFFA R., VLACHOVSKY R., A numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms, Annals of Biomedical Engineering, 2013, 41, 1516–1527, DOI: 10.1007/s10439-013-0749-y.
- [14] SCHRÖDER J., VON HOEGEN M., An engineering tool to estimate eigenstresses in three-dimensional patient-specific arteries, Computer Methods in Applied Mechanics and Engineering, 2016, 306, 364–381, DOI: 10.1016/j.cma.2016.03.020.
- [15] JOLDES G.R., MILLER K., WITTEK A., DOYLE B., A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress, Journal of the Mechanical Behavior of Biomedical Materials, 2016, 58, 139–148, DOI:10.1016/j.jmbbm.2015.07.029.
- [16] JOLDES G.R., MILLER K., WITTEK A., FORSYTHE R.O., NEWBY D.E., DOYLE B.J., BioPARR: A software system for estimating the rupture potential index for abdominal aortic aneurysms, Scientific Reports, 2017, 7, 4641, DOI: 10.1038/s41598-017-04699-1.
- [17] FUNG Y.C., What Are the Residual-Stresses Doing in Our Blood-Vessels, Annals of Biomedical Engineering, 1991, 19, 237–249, DOI: 10.1007/bf02584301.
- [18] LU X., ZHAO J.B., WANG G.R., GREGERSEN H., KASSAB G.S., Remodeling of the zero-stress state of femoral arteries in response to flow overload, American Journal of Physiology. Heart and Circulatory Physiology, 2001, 280, H1547–59.
- [19] AUER M., GASSER T.C., Reconstruction and Finite Element Mesh Generation of Abdominal Aortic Aneurysms From Computerized Tomography Angiography Data With Minimal User Interactions, IEEE Transactions on Medical Imaging, 2010, 29, 1022–1028, DOI: 10.1109/TMI.2009.2039579.
- [20] POLZER S., GASSER T.C., Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index, Journal of The Royal Society Interface, 2015, 12, 20150852, DOI: 10.1098/rsif.2015.0852.
- [21] DE PUTTER S., WOLTERS B.J.B.M., RUTTEN M.C.M., BREEUWER M., GERRITSEN F.A., VAN DE VOSSE F.N., Patientspecific initial wall stress in abdominal aortic aneurysms with a backward incremental method, Journal of Biomechanics, 2007, 40, 1081–1090, DOI: 10.1016/j.jbiomech.2006.04.019.
- [22] RIVEROS F., CHANDRA S., FINOL E.A., GASSER T.C., RODRIGUEZ J.F., A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics, Annals of Biomedical Engineering, 2013, 41, 694–708, DOI: 10.1007/s10439-012-0712-3.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e182440b-27a1-4a8b-98c5-5f1f662814f1