PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of fibre/filler based polylactic Acid (PLA) composites: a brief review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Being a biodegradable polymer, poly(lactic acid) (PLA) based composites receive greater preference over nonbiodegradable plastics. Poly(lactic acid) has to find its place in various applications such as polymer composites, agriculture, biomedical, etc. Polymer composites based on PLA possess comparable mechanical strength, endurance, flexibility and endures future opportunities. Several combinations of natural fibers and filler-based PLA composites have been fabricated and investigated for physical and mechanical changes. Moreover, several biopolymers and compatibilizers are added to PLA to provide rigidity. The paper presents a tabulated review of the various natural fiber/filter-based PLA composites and the preparation and outcomes. In addition, enhancement made by the reinforcement of nano filler in the PLA are also discussed in brief. The significance of PLA in the biomedical application has been discussed in brief. The paper also shed lights in the social and economic aspects of PLA.
Twórcy
  • Research Scholar, School of Engineering & Technology, University of Technology Jaipur, Rajasthan, India
  • School of Engineering & Technology, University of Technology Jaipur, Rajasthan, India
  • Mechanical Engineering Department, SOET, HNB Garhwal University Srinagar, Uttarakhand, India, brijeshgangil@gmail.com
  • Department of Mechanical Engineering, NIT Uttarakhand, Srinagar, India
  • Department of Pedodontics, People College of Dental Sciences, Bhopal, MP, India
Bibliografia
  • [1] M. Shen, B. Song, G. Zeng, Y. Zhang, W. Huang, X. Wen, W. Tang, Are biodegradable plastics a promising solution to solve the global plastic pollution?, Environ. Pollut. 263 (2020) 114469. https://doi.org/10.1016/j.envpol.2020.114469.
  • [2] S.P. Gairola, Y.K. Tyagi, B. Gangil, A. Sharma, Fabrication and mechanical property evaluation of non-woven banana fibre epoxy-based polymer composite, in: Mater. Today Proc., 2020: pp. 3990–3996. https://doi.org/10.1016/j.matpr.2020.10.103.
  • [3] L. Ranakoti, P.K. Rakesh, Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite, Compos. Commun. 22 (2020) 100526. https://doi.org/10.1016/j.coco.2020.100526.
  • [4] B. Yadav, A. Pandey, L.R. Kumar, R.D. Tyagi, Bioconversion of waste (water)/residues to bioplastics- A circular bioeconomy approach, Bioresour. Technol. 298 (2020) 122584. https://doi.org/10.1016/j.biortech.2019.122584.
  • [5] S. Rodriguez-Perez, A. Serrano, A.A. Pantión, B. Alonso-Fariñas, Challenges of scaling-up PHA production from waste streams. A review, J. Environ. Manage. 205 (2018) 215–230. https://doi.org/10.1016/j.jenvman.2017.09.083.
  • [6] S.K. Verma, A. Gupta, T. Singh, B. Gangil, E. Jánosi, G. Fekete, Influence of dolomite on mechanical, physical and erosive wear properties of natural-synthetic fiber reinforced epoxy composites, Mater. Res. Express. 6 (2019) 125704. https://doi.org/10.1088/2053-1591/ab5abb.
  • [7] R. Siakeng, M. Jawaid, H. Ariffin, S.M. Sapuan, M. Asim, N. Saba, Natural fiber reinforced polylactic acid composites: A review, Polym. Compos. 40 (2019) 446–463. https://doi.org/10.1002/pc.24747.
  • [8] L. Ranakoti, B. Gangil, P. Kumar Rakesh, N. Agrawal, Synthesis and Utilization of Biodegradable Polymers, in: Biobased Compos., Wiley, 2021: pp. 167–174. https://doi.org/10.1002/9781119641803.ch12.
  • [9] A. Basu, M. Nazarkovsky, R. Ghadi, W. Khan, A.J. Domb, Poly(lactic acid)-based nanocomposites, Polym. Adv. Technol. 28 (2017) 919–930. https://doi.org/10.1002/pat.3985.
  • [10] F. Saliu, S. Montano, M.G. Garavaglia, M. Lasagni, D. Seveso, P. Galli, Microplastic and charred microplastic in the Faafu Atoll, Maldives, Mar. Pollut. Bull. 136 (2018) 464–471. https://doi.org/10.1016/j.marpolbul.2018.09.023.
  • [11] E. Kabir, R. Kaur, J. Lee, K.H. Kim, E.E. Kwon, Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes, J. Clean. Prod. 258 (2020) 120536. https://doi.org/10.1016/j.jclepro.2020.120536.
  • [12] T.G. Yashas Gowda, M.R. Sanjay, K. Subrahmanya Bhat, P. Madhu, P. Senthamaraikannan, B. Yogesha, Polymer matrix-natural fiber composites: An overview, Cogent Eng. 5 (2018) 1446667. https://doi.org/10.1080/23311916.2018.1446667.
  • [13] A. Ilyas Rushdana, M. Sapuan Salit, M. Lamin Sanyang, M. Ridzwan Ishak, Nanocrystalline Cellulose As Reinforcement For Polymeric Matrix Nanocomposites And Its Potential Applications: A Review, Curr. Anal. Chem. 13 (2017) 203–225. https://doi.org/10.2174/1573411013666171003155624.
  • [14] X. Cui, A. Ozaki, T.A. Asoh, H. Uyama, Cellulose modified by citric acid reinforced Poly(lactic acid) resin as fillers, Polym. Degrad. Stab. 175 (2020) 109118. https://doi.org/10.1016/j.polymdegradstab.2020.109118.
  • [15] M.K. Lila, K. Shukla, U.K. Komal, I. Singh, Accelerated thermal ageing behaviour of bagasse fibers reinforced Poly (Lactic Acid) based biocomposites, Compos. Part B Eng. 156 (2019) 121–127. https://doi.org/10.1016/j.compositesb.2018.08.068.
  • [16] J.O. Akindoyo, M.D.H. Beg, S. Ghazali, H.P. Heim, M. Feldmann, M. Mariatti, Simultaneous impact modified and chain extended glass fiber reinforced poly(lactic acid) composites: Mechanical, thermal, crystallization, and dynamic mechanical performance, J. Appl. Polym. Sci. 138 (2021) 49752. https://doi.org/10.1002/app.49752.
  • [17] G. Wang, D. Zhang, B. Li, G. Wan, G. Zhao, A. Zhang, Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment, Int. J. Biol. Macromol. 129 (2019) 448–459. https://doi.org/10.1016/j.ijbiomac.2019.02.020.
  • [18] X. Zuo, Y. Xue, L. Wang, Y. Zhou, Y. Yin, Y.C. Chuang, C.C. Chang, R. Yin, M.H. Rafailovich, Y. Guo, Engineering Styrenic Blends with Poly(lactic acid), Macromolecules. 52 (2019) 7547–7556. https://doi.org/10.1021/acs.macromol.9b01349.
  • [19] S. Bhattacharjee, D.S. Bajwa, Feasibility of Reprocessing Natural Fiber Filled Poly(lactic acid) Composites: An In-Depth Investigation, Adv. Mater. Sci. Eng. 2017 (2017) 1–10. https://doi.org/10.1155/2017/1430892.
  • [20] L. Musyarofah, D. Puspita, E. Hidayah, Sujito, Tensile properties of coir and fleece fibers reinforced poly-lactic acid hybrid green composites, in: J. Phys. Conf. Ser., 2019: p. 012008. https://doi.org/10.1088/1742-6596/1217/1/012008.
  • [21] H. Ren, Y. Zhang, H. Zhai, J. Chen, Production and evaluation of biodegradable composites based on polyhydroxybutyrate and polylactic acid reinforced with short and long pulp fibers, Cellul. Chem. Technol. 49 (2015) 641–652.
  • [22] T. Yu, J. Ren, S. Li, H. Yuan, Y. Li, Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, Compos. Part A Appl. Sci. Manuf. 41 (2010) 499–505. https://doi.org/10.1016/j.compositesa.2009.12.006.
  • [23] N.A. Ibrahim, W. Md Zin Wan Yunus, M. Othman, K. Abdan, K.A. Hadithon, Poly(Lactic Acid) (PLA)-reinforced kenaf bast fiber composites: The effect of triacetin, J. Reinf. Plast. Compos. 29 (2010) 1099–1111. https://doi.org/10.1177/0731684409344651.
  • [24] P. Juntuek, C. Ruksakulpiwat, P. Chumsamrong, Y. Ruksakulpiwat, Mechanical properties of polylactic acid and natural rubber blends using vetiver grass fiber as filler, in: Adv. Mater. Res., 2010: pp. 1167–1170. https://doi.org/10.4028/www.scientific.net/AMR.123-125.1167.
  • [25] T. Tábi, N.K. Kovács, J.G. Kovács, Basalt fibre reinforced poly (LACTIC ACID) based composites for engineering applications, in: 16th Eur. Conf. Compos. Mater. ECCM 2014, 2014.
  • [26] X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites, Compos. Part A Appl. Sci. Manuf. 88 (2016) 198–205. https://doi.org/10.1016/j.compositesa.2016.05.032.
  • [27] W. Xu, The mechanical properties of Carbon fiber/Polylatide/Chitosan composites, in: 2010 4th Int. Conf. Bioinforma. Biomed. Eng. ICBBE 2010, IEEE, 2010: pp. 1–4. https://doi.org/10.1109/ICBBE.2010.5515711.
  • [28] X.G. Li, X. Zheng, Y.Q. Wu, DMA analysis on bamboo fiber/polylactic acid composites, in: 2010 Int. Conf. Mech. Autom. Control Eng. MACE2010, IEEE, 2010: pp. 3090–3092. https://doi.org/10.1109/MACE.2010.5535322.
  • [29] B. Asaithambi, G. Ganesan, S. Ananda Kumar, Bio-composites: Development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites, Fibers Polym. 15 (2014) 847–854. https://doi.org/10.1007/s12221-014-0847-y.
  • [30] V.L. Finkenstadt, C.K. Liu, P.H. Cooke, L.S. Liu, J.L. Willett, Mechanical property characterization of plasticized sugar beet pulp and poly(lactic acid) green composites using acoustic emission and confocal microscopy, J. Polym. Environ. 16 (2008) 19–26. https://doi.org/10.1007/s10924-008-0085-8.
  • [31] E. Fortunati, D. Puglia, M. Monti, C. Santulli, M. Maniruzzaman, M.L. Foresti, A. Vazquez, J.M. Kenny, Okra (Abelmoschus esculentus) Fibre Based PLA Composites: Mechanical Behaviour and Biodegradation, J. Polym. Environ. 21 (2013) 726–737. https://doi.org/10.1007/s10924-013-0571-5.
  • [32] M.M. Hassan, K. Koyama, Thermomechanical and viscoelastic properties of green composites of PLA using chitin micro-particles as fillers, J. Polym. Res. 27 (2020) 27. https://doi.org/10.1007/s10965-019-1991-2.
  • [33] C.T. Hsieh, Y.J. Pan, C.W. Lou, C.L. Huang, Z.I. Lin, J.M. Liao, J.H. Lin, Polylactic acid/carbon fiber composites: Effects of functionalized elastomers on mechanical properties, thermal behavior, Surface compatibility, and electrical characteristics, Fibers Polym. 17 (2016) 615–623. https://doi.org/10.1007/s12221-016-5922-0.
  • [34] K.W. Kim, B.H. Lee, H.J. Kim, K. Sriroth, J.R. Dorgan, Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites, in: J. Therm. Anal. Calorim., 2012: pp. 1131–1139. https://doi.org/10.1007/s10973-011-1350-y.
  • [35] S. Kuciel, K. Mazur, M. Hebda, The Influence of Wood and Basalt Fibres on Mechanical, Thermal and Hydrothermal Properties of PLA Composites, J. Polym. Environ. 28 (2020) 1204–1215. https://doi.org/10.1007/s10924-020-01677-z.
  • [36] A. Masek, K. Diakowska, M. Zaborski, Physico-mechanical and thermal properties of epoxidized natural rubber/polylactide (ENR/PLA) composites reinforced with lignocellulose, J. Therm. Anal. Calorim. 125 (2016) 1467–1476. https://doi.org/10.1007/s10973-016-5682-5.
  • [37] T.R. Rigolin, M.C. Takahashi, D.L. Kondo, S.H.P. Bettini, Compatibilizer Acidity in Coir-Reinforced PLA Composites: Matrix Degradation and Composite Properties, J. Polym. Environ. 27 (2019) 1096–1104. https://doi.org/10.1007/s10924-019-01411-4.
  • [38] Y. Song, J. Liu, S. Chen, Y. Zheng, S. Ruan, Y. Bin, Mechanical Properties of Poly (Lactic Acid)/Hemp Fiber Composites Prepared with a Novel Method, J. Polym. Environ. 21 (2013) 1117–1127. https://doi.org/10.1007/s10924-013-0569-z.
  • [39] C. Way, D.Y. Wu, D. Cram, K. Dean, E. Palombo, Processing Stability and Biodegradation of Polylactic Acid (PLA) Composites Reinforced with Cotton Linters or Maple Hardwood Fibres, J. Polym. Environ. 21 (2013) 54–70. https://doi.org/10.1007/s10924-012-0462-1.
  • [40] C. Xu, X. Zhang, X. Jin, S. Nie, R. Yang, Study on Mechanical and Thermal Properties of Poly(Lactic acid)/Poly(Butylene adipate-co-terephthalate)/Office Wastepaper Fiber Biodegradable Composites, J. Polym. Environ. 27 (2019) 1273–1284. https://doi.org/10.1007/s10924-019-01428-9.
  • [41] A.A. Yussuf, I. Massoumi, A. Hassan, Comparison of polylactic Acid/Kenaf and polylactic Acid/Rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties, J. Polym. Environ. 18 (2010) 422–429. https://doi.org/10.1007/s10924-010-0185-0.
  • [42] M. Ghorbani Chaboki, J. Mohammadi-Rovshandeh, F. Hemmati, Poly(lactic acid)/thermoplasticized rice straw biocomposites: effects of benzylated lignocellulosic filler and nanoclay, Iran. Polym. J. (English Ed. 28 (2019) 777–788. https://doi.org/10.1007/s13726-019-00743-1.
  • [43] A. Zandi, A. Zanganeh, F. Hemmati, J. Mohammadi-Roshandeh, Thermal and biodegradation properties f poly(lactic acid)/rice straw composites: effects of modified pulping products, Iran. Polym. J. (English Ed. 28 (2019) 403–415. https://doi.org/10.1007/s13726-019-00709-3.
  • [44] A.P. Morales, A. Güemes, A. Fernandez-Lopez, V.C. Valero, S. de La Rosa Llano, Bamboo-polylactic acid (PLA) composite material for structural applications, Materials (Basel). 10 (2017) 1286. https://doi.org/10.3390/ma10111286.
  • [45] D. Li, Y. Jiang, S. Lv, X. Liu, J. Gu, Q. Chen, Y. Zhang, Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials, PLoS One. 13 (2018) e0193520. https://doi.org/10.1371/journal.pone.0193520.
  • [46] M. Soleimani, L.G. Tabil, I. Oguocha, J. Fung, Interactive Influence of Biofiber Composition and Elastomer on Physico-Mechanical Properties of PLA Green Composites, J. Polym. Environ. 26 (2018) 532–542. https://doi.org/10.1007/s10924-017-0967-8.
  • [47] A. Grząbka-Zasadzińska, M. Odalanowska, S. Borysiak, Thermal and mechanical properties of biodegradable composites with nanometric cellulose, J. Therm. Anal. Calorim. 138 (2019) 4407–4416. https://doi.org/10.1007/s10973-019-09023-9.
  • [48] M.M. Hassan, M.J. Le Guen, N. Tucker, K. Parker, Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA, Cellulose. 26 (2019) 4463–4478. https://doi.org/10.1007/s10570-019-02393-1.
  • [49] X. Zhang, L. Chen, T. Mulholland, T.A. Osswald, Characterization of mechanical properties and fracture mode of PLA and copper/PLA composite part manufactured by fused deposition modeling, SN Appl. Sci. 1 (2019) 616. https://doi.org/10.1007/s42452-019-0639-5.
  • [50] P.O. Bussiere, S. Therias, J.L. Gardette, M. Murariu, P. Dubois, M. Baba, Effect of ZnO nanofillers treated with triethoxy caprylylsilane on the isothermal and non-isothermal crystallization of poly(lactic acid), Phys. Chem. Chem. Phys. 14 (2012) 12301–12308. https://doi.org/10.1039/c2cp41574g.
  • [51] M. Murariu, A. Doumbia, L. Bonnaud, A.L. Dechief, Y. Paint, M. Ferreira, C. Campagne, E. Devaux, P. Dubois, High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties, Biomacromolecules. 12 (2011) 1762–1771. https://doi.org/10.1021/bm2001445.
  • [52] M.E. Hoque, Processing and Characterization of Cockle Shell Calcium Carbonate (CaCO3) Bioceramic for Potential Application in Bone Tissue Engineering, J. Mater. Sci. Eng. 02 (2013). https://doi.org/10.4172/2169-0022.1000132.
  • [53] J.Z. Liang, L. Zhou, C.Y. Tang, C.P. Tsui, Crystalline properties of poly(L-lactic acid) composites filled with nanometer calcium carbonate, Compos. Part B Eng. 45 (2013) 1646–1650. https://doi.org/10.1016/j.compositesb.2012.09.086.
  • [54] Y.B. Nekhamanurak, P. Patanathabutr, N. Hongsriphan, Mechanical Properties of Hydrophilicity Modified CaCO3-Poly (Lactic Acid) Nanocomposite, Int. J. Appl. Phys. Math. (2012) 98–103. https://doi.org/10.7763/ijapm.2012.v2.62.
  • [55] N. Shi, J. Cai, Q. Dou, Crystallization, morphology and mechanical properties of PLA/PBAT/CaCO3 composites, in: Adv. Mater. Res., 2013: pp. 768–771. https://doi.org/10.4028/www.scientific.net/AMR.602-604.768.
  • [56] W.M. Chiu, Y.A. Chang, H.Y. Kuo, M.H. Lin, H.C. Wen, A study of carbon nanotubes/biodegradable plastic polylactic acid composites, J. Appl. Polym. Sci. 108 (2008) 3024–3030. https://doi.org/10.1002/app.27796.
  • [57] K. Fukushima, M. Murariu, G. Camino, P. Dubois, Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid), Polym. Degrad. Stab. 95 (2010) 1063–1076. https://doi.org/10.1016/j.polymdegradstab.2010.02.029.
  • [58] L. Suryanegara, A.N. Nakagaito, H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites, Compos. Sci. Technol. 69 (2009) 1187–1192. https://doi.org/10.1016/j.compscitech.2009.02.022.
  • [59] P. Tingaut, T. Zimmermann, F. Lopez-Suevos, Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose, Biomacromolecules. 11 (2010) 454–464. https://doi.org/10.1021/bm901186u.
  • [60] I. Spiridon, K. Leluk, A.M. Resmerita, R.N. Darie, Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering, Compos. Part B Eng. 69 (2015) 342–349. https://doi.org/10.1016/j.compositesb.2014.10.006.
  • [61] B.K. Chen, C.H. Shen, A.F. Chen, Preparation of ductile PLA materials by modification with trimethyl hexamethylene diisocyanate, Polym. Bull. 69 (2012) 313–322. https://doi.org/10.1007/s00289-012-0730-1.
  • [62] R. Pantani, G. Gorrasi, G. Vigliotta, M. Murariu, P. Dubois, PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics, Eur. Polym. J. 49 (2013) 3471–3482. https://doi.org/10.1016/j.eurpolymj.2013.08.005.
  • [63] R. Malinowski, K. Janczak, P. Rytlewski, A. Raszkowska-Kaczor, K. Moraczewski, T. Zuk, Influence of glass microspheres on selected properties of polylactide composites, Compos. Part B Eng. 76 (2015) 13–19. https://doi.org/10.1016/j.compositesb.2015.02.013.
  • [64] Y. Li, C. Chen, J. Li, X.S. Sun, Synthesis and characterization of bionanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization, Polymer (Guildf). 52 (2011) 2367–2375. https://doi.org/10.1016/j.polymer.2011.03.050.
  • [65] Y.B. Luo, W. Da Li, X.L. Wang, D.Y. Xu, Y.Z. Wang, Preparation and properties of nanocomposites based on poly(lactic acid) and functionalized TiO2, Acta Mater. 57 (2009) 3182–3191. https://doi.org/10.1016/j.actamat.2009.03.022.
  • [66] M. Vallet-Regi, S. Granado, D. Arcos, M. Gordo, M. V. Cabanas, C. V. Ragel, A.J. Salinas, A.L. Doadrio, J. San Roman, Preparation, characterization, andin vitro release of Ibuprofen from Al2O3/PLA/PMMA composites, J. Biomed. Mater. Res. 39 (1998) 423–428. https://doi.org/10.1002/(SICI)1097-4636(19980305)39:3<423::AID-JBM11>3.0.CO;2-B.
  • [67] M. Sajjadi, M. Nasrollahzadeh, S. Mohammad Sajadi, Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity, J. Colloid Interface Sci. 497 (2017) 1–13. https://doi.org/10.1016/j.jcis.2017.02.037.
  • [68] M. Shabanian, M. Khoobi, F. Hemati, H.A. Khonakdar, S. esmaeil S. Ebrahimi, U. Wagenknecht, A. Shafiee, New PLA/PEI-functionalized Fe3O4 nanocomposite: Preparation and characterization, J. Ind. Eng. Chem. 24 (2015) 211–218. https://doi.org/10.1016/j.jiec.2014.09.032.
  • [69] M.Y. Razzaq, M. Behl, A. Lendlein, Magnetic memory effect of nanocomposites, Adv. Funct. Mater. 22 (2012) 184–191. https://doi.org/10.1002/adfm.201101590.
  • [70] S. Taccola, A. Desii, V. Pensabene, T. Fujie, A. Saito, S. Takeoka, P. Dario, A. Menciassi, V. Mattoli, Free-standing poly(l-lactic acid) nanofilms loaded with superparamagnetic nanoparticles, Langmuir. 27 (2011) 5589–5595. https://doi.org/10.1021/la2004134.
  • [71] S. Vacaras, M. Baciut, O. Lucaciu, C. Dinu, G. Baciut, L. Crisan, M. Hedesiu, B. Crisan, F. Onisor, G. Armencea, I. Mitre, I. Barbur, W. Kretschmer, S. Bran, Understanding the basis of medical use of poly-lactide-based resorbable polymers and composites–a review of the clinical and metabolic impact, Drug Metab. Rev. 51 (2019) 570–588. https://doi.org/10.1080/03602532.2019.1642911.
  • [72] S.M. Davachi, B. Kaffashi, Polylactic Acid in Medicine, Polym. - Plast. Technol. Eng. 54 (2015) 944–967. https://doi.org/10.1080/03602559.2014.979507.
  • [73] Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, M. Glogauer, Biodegradable materials for bone repair and tissue engineering applications, Materials (Basel). 8 (2015) 5744–5794. https://doi.org/10.3390/ma8095273.
  • [74] J.C. Bogaert, P. Coszach, Poly(lactic acids): A potential solution to plastic waste dilemma, in: Macromol. Symp., 2000: pp. 287–303. https://doi.org/10.1002/1521-3900(200003)153:1<287::AID-MASY287>3.0.CO;2-E.
  • [75] E.T.H. Vink, K.R. Rábago, D.A. Glassner, P.R. G ruber, Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production, Polym. Degrad. Stab. 80 (2003) 403–419. https://doi.org/10.1016/S0141-3910(02)00372-5.
  • [76] S. Chiarakorn, C.K. Permpoonwiwat, P. Nanthachatchavankul, Financial and economic viability of bioplastic production in Thailand, 2014.
  • [77] Tides Center/Environmental Health Strategy Center; Maine Initiaties; Jim Lunt & Associates LLC, The Business Case for Commercial Production of Bioplastics in Maine: A preliminary report, 2010.
  • [78] A. Manandhar, A. Shah, Techno-economic analysis of bio-based lactic acid production utilizing corn grain as feedstock, Processes. 8 (2020) 199. https://doi.org/10.3390/pr8020199.
  • [79] S. Sanaei, P.R. Stuart, Systematic assessment of triticale-based biorefinery strategies: techno-economic analysis to identify investment opportunities, Biofuels, Bioprod. Biorefining. 12 (2018) S46–S59. https://doi.org/10.1002/bbb.1499.
  • [80] E.T.H. Vink, D.A. Glassner, J.J. Kolstad, R.J. Wooley, R.P. O’Connor, The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production, Ind. Biotechnol. 3 (2007) 58–81. https://doi.org/10.1089/ind.2007.3.058
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e17c2413-d4e3-4ba0-9c2e-7385086601b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.