PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Single and combined effects of dimethoate and malathion on oxidative stress biomarkers in the non-target freshwater mussel Dreissena polymorpha

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study evaluates the single and combined effectsof dimethoate (DI) and malathion (MA) on oxidative stress biomarkers in the freshwater mussel Dreissena polymorpha, estimating the potential harm of these pesticides on aquatic ecosystems. Superoxide dismutase (SOD) and catalase (CAT) activities, and glutathione (GSH) and lipid peroxidation (TBARS) levels were determined in D. polymorpha exposed to sublethal concentrations of DI, MA and a combination of the two during 24 and 96 h periods. The results showed that the GSH levels were decreased but the TBARS levels were increased in all the exposure groups after 24 and 96 hcompared to the control. It was observed that SOD activity decreased but CAT activity increased in all the DI exposure groups after 24 h compared to the control. At the end of 96 hours, it was observed that CAT and SOD activities increased again in some exposure groups compared to the control. Exposure time also had an effect on biomarkers in different levels. According to the results, the cytotoxicity of DI and MA combination depended on their concentrations. DI or/and MA, in sub-lethal concentrations, induced oxidative damages in D. polymorpha. Combined exposure of the pesticides can alter their toxicity and may be evidence of increased toxicity and oxidative stress.
Rocznik
Strony
333--342
Opis fizyczny
Bibliogr. 54 poz., tab., wykr.
Twórcy
autor
  • Munzur University, Fisheries Faculty, TR62000 Tunceli, Turkey
  • Munzur University, Tunceli Vocational School,Department of Plant and Animal Production, Organic Agriculture Programme, TR62000Tunceli, Turkey
  • Munzur University, Pertek Sakine Genç Vocational School, Department of Veterinary Medicine, Laboratory and Veterinarian Health Programme, TR62000 Tunceli, Turkey
Bibliografia
  • [1]. Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., & Rezaie, A. (2004). Pesticides and oxidative stress: A review. Medical Science Monitor, 10(6), RA141-RA147. PMID:15173684
  • [2]. Acquaroni, M., Peluso, J., Svartz, G., Aronzon, C., & Pérez Coll, C. (2021). Characterization of acute toxicity, genotoxicity, and oxidative stress of dimethoate in Rhinella arenarum larvae. Environmental Science and Pollution Research International, 28(29), 41772-41779. https://doi.org/10.1007/s11356-021-13691-2 PMID:33791959
  • [3]. Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., & Sabzevari, O. (2003). Biochemical evidence for free radical-induced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Human and Experimental Toxicology, 22(4), 205-211. https://doi.org/10.1191/0960327103ht346oa PMID:12755471
  • [4]. Aksoy, L., & Alper, Y. (2019). The effects of royal jelly on oxidative stress and toxicity in tissues induced by malathion, an organophosphate insecticide. Journal of the Hellenic Veterinary Medical Society, 70(2), 1517-1524. https://doi.org/10.12681/jhvms.20827
  • [5]. Ali, D., Kumar, P. G., Kumar, S., & Ahmed, M. (2014). Evaluation of genotoxic and oxidative stress response to dimethoate in freshwater fish Channa punctatus (Bloch). Chemical Speciation and Bioavailability, 26(2), 111-118. https://doi.org/10.1080/09542299.2014.11073965
  • [6]. Anzecc & Armcanz. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.
  • [7]. APHA (1998) Standard Methods for the examination of water and wastewater.
  • [8]. Barski, D., & Spodniewska, A. (2012). Activity of selected antioxidative enzymes in rats exposed to dimethoate and pyrantel tartrate. Polish Journal of Veterinary Sciences, 15(2), 239-245. https://doi.org/10.2478/v10181-011-0140-6 PMID:22844700
  • [9]. Bashnin, T., Verhaert, V., De Jonge, M., Vanhaecke, L., Teuchies, J., & Bervoets, L. (2019). Relationship between pesticide accumulation in transplanted zebra mussel (Dreissena polymorpha) and community structure of aquatic macroinvertebrates. Environmental Pollution, 252, 591-598. https://doi.org/10.1016/j.envpol.2019.05.140 PMID:31185347
  • [10]. Banaee, M., Sureda, A., Taheri, S., & Hedayatzadeh, F. (2019a). Sub-lethal effects of dimethoate alone and in combination with cadmium on biochemical parameters in freshwater snail, Galba truncatula. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 220, 62-70. https://doi.org/10.1016/j.cbpc.2019.03.002 PMID:30880276
  • [11]. Banaee, M., Akhlaghi, M., Soltanian, S., Gholamhosseini, A., Heidarieh, H., & Fereidouni, M. S. (2019b). Acute exposure to chlorpyrifos and glyphosate induces changes in hemolymph biochemical parameters in the crayfish, Astacus leptodactylus (Eschscholtz, 1823). Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 222, 145-155. https://doi.org/10.1016/j.cbpc.2019.05.003 PMID:31055068
  • [12]. Banaee, M., Sureda, A., & Faggio, C. (2022). Protective effect of protexin concentrate in reducing the toxicity of chlorpyrifos in common carp (Cyprinus carpio). Environmental Toxicology and Pharmacology, 94, 103918. https://doi.org/10.1016/j.etap.2022.103918 PMID:35753671
  • [13]. Bonansea, R. I., Marino, D. J. G., Bertrand, L., Wunderlin, D. A., & Amé, M. V. (2017). Tissue-specific bioconcentration and biotransformation of cypermethrin and chlorpyrifos in a native fish (Jenynsia multidentata) exposed to these insecticides singly and in mixtures. Environmental Toxicology and Chemistry, 36(7), 1764-1774. https://doi.org/10.1002/etc.3613 PMID:27792835
  • [14]. Chitra, K. C., & Abdu, S. (2013). Impact of Malathion on The Biochemıcal Composition of The Freshwater Fish, Oreochromis Mossambicus. International Journal of Zoology Research, 3(4), 31-42.
  • [15]. Dal-Pizzol, F., Klamt, F., Dalmolin, R. J. S., Bernard, E. A., & Moreira, J. C. (2001). Mitogenic signaling mediated by oxidants in retinol treated Sertoli cells. Free Radical Research, 35(6), 749-755. https://doi.org/10.1080/10715760100301251 PMID:11811526
  • [16]. Demirci, Ö., Güven, K., Asma, D., Öğüt, S., & Uğurlu, P. (2018). Effects of endosulfan, thiamethoxam, and indoxacarb in combination with atrazine on multi-biomarkers in Gammarus kischineffensis. Ecotoxicology and Environmental Safety, 147, 749-758. https://doi.org/10.1016/j.ecoenv.2017.09.038 PMID:28942278
  • [17]. Dogan, D., & Can, C. (2011). Endocrine disruption and altered biochemical indices in male Oncorhynchus mykiss in response to dimethoate. Pesticide Biochemistry and Physiology, 99(2), 157-161. https://doi.org/10.1016/j.pestbp.2010.11.012
  • [18]. Erguven, G. O., Serdar, O., Tanyol, M., Yildirim, N. C., Yildirim, N., & Durmus, B. (2022). The Bioremediation Capacity of Sphingomonas melonis for Methomyl-Contaminated Soil Media: RSM Optimization and Biochemical Assessment by Dreissena polymorpha. ChemistrySelect, 7(27), e202202105. https://doi.org/10.1002/slct.202202105
  • [19]. Ferrari, A., Venturino, A., & de D’Angelo, A. M. P. (2007). Effects of carbaryl and azinphos methyl on juvenile rainbow trout (Oncorhynchus mykiss) detoxifying enzymes. Pesticide Biochemistry and Physiology, 88(2), 134-142. https://doi.org/10.1016/j.pestbp.2006.10.005
  • [20]. Franco, J. L., Posser, T., Mattos, J. J., Trevisan, R., Brocardo, P. S., Rodrigues, A. L., Leal, R. B., Farina, M., Marques, M. R., Bainy, A. C., & Dafre, A. L. (2009). Zinc reverses malathion-induced impairment in antioxidant defenses. Toxicology Letters, 187(3), 137-143. https://doi.org/10.1016/j.toxlet.2009.02.015 PMID:19429256
  • [21]. Frost, J., & Bennetsen, M. S. (2019). The Use of Biomarkers in Ecotoxicology in the Near Future Aquatic Environment, In collaboration with: Joen Olsen Mathias W. Andersen Roskilde University Enviromental Biology Project.
  • [22]. Gamble, S. C., Goldfarb, P. S., Porte, C., & Livingstone, D. R. (1995). Glutathione peroxidase and other antioxidant enzyme function in marine invertebrates (Mytilus edulis, Pecten maximus, Carcinus maenas and Asterias rubens). Marine Environmental Research, 39(1-4), 191-195. https://doi.org/10.1016/0141-1136(94)00031-J
  • [23]. Garcia, S. M., Zerbi, A., Aliaume, C., Do Chi, T., & Lasserre, G. (2003). The ecosystem approach to fisheries. Issues, terminology, principles, institutional foundations, implementation and Outlook. FAO Fisheries Technical Paper, 443, 71.
  • [24]. Ghorbani Taherdehi, F., Nikravesh, M. R., Jalali, M., Fazel, A., & Gorji Valokola, M. (2019). Evaluating the protective role of ascorbic acid in malathion-induced testis tissue toxicity of male rats. International Journal of Preventive Medicine, 10(1), 45. https://doi.org/10.4103/ijpvm.IJPVM_253_17 PMID:31143419
  • [25]. Gismondi, E., Beisel, J. N., & Cossu-Leguille, C. (2012). Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli. Environmental Research, 118, 47-52. https://doi.org/10.1016/j.envres.2012.06.004 PMID:22769238
  • [26]. Gunderson, M. P., Nguyen, B. T., Reyes, J. C. C., Holden, L. L., French, J. M., Smith, B. D., & Lineberger, C. (2018). Response of phase I and II detoxification enzymes, glutathione, metallothionein and acetylcholine esterase to mercury and dimethoate in signal crayfish (Pacifastacus leniusculus). Chemosphere, 208, 749-756. https://doi.org/10.1016/j.chemosphere.2018.05.183.
  • [27]. Hassall, K. A. (1990). The biochemistry and uses of pesticides. Macmillan Press. https://doi.org/10.1007/978-1-349-20990-3
  • [28]. Hu, M. L., & Dillard, C. J. (1994). Plasma SH and GSH measurement. Methods in Enzymology, 233, 385-387.
  • [29]. Horgan, M. J., & Mills, E. L. (1997). Clearance rates and filtering activity of zebra mussel (Dreissena polymorpha): Implications for freshwater lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54(2), 249-255. https://doi.org/10.1139/f96-276
  • [30]. John, S., Kale, M., Rathore, N., & Bhatnagar, D. (2001). Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. The Journal of Nutritional Biochemistry, 12(9), 500-504. https://doi.org/10.1016/S0955-2863(01)00160-7 PMID:11834209
  • [31]. Kalender, A., Selvaraj, A., Kim, S. Y., Gulati, P., Brûlé, S., Viollet, B., Kemp, B. E., Bardeesy, N., Dennis, P., Schlager, J. J., Marette, A., Kozma, S. C., & Thomas, G. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metabolism, 11(5), 390-401. https://doi.org/10.1016/j.cmet.2010.03.014 PMID:20444419
  • [32]. Koivula, M. J., Kanerva, M., Salminen, J. P., Nikinmaa, M., & Eeva, T. (2011). Metal pollution indirectly increases oxidative stress in great tit (Parus major) nestlings. Environmental Research, 111(3), 362-370. https://doi.org/10.1016/j.envres.2011.01.005 PMID:21295293
  • [33]. Korte, F., Kvesitadze, G., Ugrekhelidze, D., Gordeziani, M., Khatisashvili, G., Buadze, O., Zaalishvili, G., & Coulston, F. (2000). Organic toxicants and plants. Ecotoxicology and Environmental Safety, 47(1), 1-26. https://doi.org/10.1006/eesa.2000.1929 PMID:10993699
  • [34]. Lasram, M. M., Annabi, A. B., Rezg, R., Elj, N., Slimen, S., Kamoun, A., El-Fazza, S., & Gharbi, N. (2008). Effect of short-time malathion administration on glucose homeostasis in Wistar rat. Pesticide Biochemistry and Physiology, 92(3), 114-119. https://doi.org/10.1016/j.pestbp.2008.06.006
  • [35]. Maharajan, K., Muthulakshmi, S., Nataraj, B., Ramesh, M., & Kadirvelu, K. (2018). Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study. Aquatic Toxicology (Amsterdam, Netherlands), 196, 132-145. https://doi.org/10.1016/j.aquatox.2018.01.010 PMID:29407799
  • [36]. Modesto, K. A., & Martinez, C. B. R. (2010). Roundup causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere, 78(3), 294-299. https://doi.org/10.1016/j.chemosphere.2009.10.047 PMID:19910015
  • [37]. Oruç, E. O., & Usta, D. (2007). Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environmental Toxicology and Pharmacology, 23(1), 48-55. https://doi.org/10.1016/j.etap.2006.06.005 PMID:21783736
  • [38]. Pala, A. (2019). The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean). Environmental Science and Pollution Research International, 26(36), 36869-36877. https://doi.org/10.1007/s11356-019-06804-5 PMID:31745777
  • [39]. Pawar, A. P. (2020). Pesticide induced genotoxicity and oxidative stress related studies in whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) Doctor of Philosophy in Zoology, Department of Zoology, Goa University, Goa-403206, India.
  • [40]. Pandey, R. K., Singh, R. N., Singh, S., Singh, N. N., & Das, V. K. (2009). Acute toxicity bioassay of dimethoate on freshwater airbreathing catfish, Heteropneustes fossilis (Bloch). Journal of Environmental Biology, 30(3), 437-440. PMID:20120474
  • [41]. Rocher, B., Le Goff, J., Peluhet, L., Briand, M., Manduzio, H., Gallois, J., Devier, M. H., Geffard, O., Gricourt, L., Augagneur, S., Budzinski, H., Pottier, D., André, V., Lebailly, P., & Cachot, J. (2006). Genotoxicant accumulation and cellular defence activation in bivalves chronically exposed to waterborne contaminants from the Seine River. Aquatic Toxicology (Amsterdam, Netherlands), 79(1), 65-77. https://doi.org/10.1016/j.aquatox.2006.05.005 PMID:16834997
  • [42]. Serdar, O., Yildirim, N. C., Tatar, S., Yildirim, N., & Ogedey, A. (2018). Antioxidant biomarkers in Gammarus pulex to evaluate the efficiency of electrocoagulation process in landfill leachate treatment. Environmental Science and Pollution Research International, 25(13), 12538-12544. https://doi.org/10.1007/s11356-018-1491-7 PMID:29464603
  • [43]. Serdar, O. (2019). The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environmental Science and Pollution Research International, 26(21), 21905-21914. https://doi.org/10.1007/s11356-019-04629-w PMID:31140088
  • [44]. Serdar, O. (2021). Determination of the Effect of Cyfluthrin Pesticide on Zebra Mussel (Dreissena polymorpha) by Some Antioxidant Enzyme Activities. Journal of Anatolian Environmental and Animal Sciences, 6(1), 77-83. https://doi.org/10.35229/jaes.804479
  • [45]. Singh, M., Sandhir, R., & Kiran, R. (2004). In vitro effects of organophosphate pesticides on rat erythrocytes. Indian Journal of Experimental Biology, 42(3), 292-296. PMID:15233300
  • [46]. Shadegan, M. R., & Banaee, M. (2018). Effects of dimethoate alone and in combination with Bacilar fertilizer on oxidative stress in common carp, Cyprinus carpio. Chemosphere, 208, 101-107. https://doi.org/10.1016/j.chemosphere.2018.05.177 PMID:29860141
  • [47]. Sharma, R. M. (1990). Effect of endosulfan on acid and alkaline phosphatase activity in liver, kidney, and muscles of Channa gachua. Bulletin of Environmental Contamination and Toxicology, 44(3), 443-448. https://doi.org/10.1007/BF01701227 PMID:2328352
  • [48]. Sobjak, T. M., Romão, S., do Nascimento, C. Z., Dos Santos, A. F. P., Vogel, L., & Guimarães, A. T. B. (2017). Assessment of the oxidative and neurotoxic effects of glyphosate pesticide on the larvae of Rhamdia quelen fish. Chemospher, 182, 267-275. https://doi.org/10.1016/j.chemosphere.2017.05.031 PMID:28500971
  • [49]. Su, J., Li, B., Cheng, S., Zhu, Z., Sang, X., Gui, S., Xie, Y., Sun, Q., Cheng, Z., Cheng, J., Hu, R., Shen, W., Xia, Q., Zhao, P., & Hong, F. (2014). Phoxim-induced damages of Bombyx mori larval midgut and titanium dioxide nanoparticles protective role under phoxim-induced toxicity. Environmental Toxicology, 29(12), 1355-1366. https://doi.org/10.1002/tox.21866 PMID:23595993
  • [50]. Ullah, S., Begum, M., Dhama, K., Ahmad, S., Hassan, S., & Alam, I. (2016). Malathion Induced DNA Damage in Freshwater Fish, Labeo rohita (Hamilton 1822). Using Alkaline Single Cell Gel Electrophoresis. Asian Journal of Animal and Veterinary Advances, 11(2), 98-105. 10.3923/ajava.2016.219
  • [51]. Uzun, F. G., & Kalender, Y. (2011). Protective Effect of Vitamins C and E on Malathion Induced Nephrotoxicity in Male Rats. Gazi University Journal of Science, 24(2), 193-201.
  • [52]. Wankhade, W. W. (2012). Effect of Malathion on Lipid Peroxidation and Enzymatic Activity of Liver Serum and Brain at Different Exposure Periods in Mice. Research Journal of Environmental Toxicology, 6(4), 142-150. https://doi.org/10.3923/rjet.2012.142.150
  • [53]. Vasseur, P., & Leguille, C. (2004). Defense systems of benthic invertebrates in response to environmental stressors. Environmental Toxicology, 19(4), 433-436. https://doi.org/10.1002/tox.20024 PMID:15269920
  • [54]. Velki, M., Lackmann, C., Barranco, A., Artabe, A. E., Rainieri, S., Hollert, H., & Seiler, T. B. (2019). Pesticides diazinon and diuron increase glutathione levels and afect multixenobiotic resistance activity and biomarker responses in zebrafsh (Danio rerio) embryos and larvae. Environmental Sciences Europe, 31(1), 4. https://doi.org/10.1186/s12302-019-0186-0
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e178d242-2141-4d36-b0dc-1d2782683146
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.