PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the existence of positive periodic solutions for totally nonlinear neutral differential equations of the second-order with functional delay

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that the totally nonlinear second-order neutral differential equation [formula] has positive periodic solutions by employing the Krasnoselskii-Burton hybrid fixed point theorem.
Słowa kluczowe
Rocznik
Strony
469--481
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • University of Cape Coast Department of Mathematics and Statistics Cape Coast, Ghana
autor
  • University of Cape Coast Department of Mathematics and Statistics Cape Coast, Ghana
Bibliografia
  • [1] M. Adivar, M.N. Islam, Y.N. Raffoul, Separate contraction and existence of periodic solutions in totally nonlinear delay differential equations, Hacettepe Journal of Mathematics and Statistics 41 (2012), 1–13.
  • [2] A. Ardjouni, A. Djoudi, Existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay, Elect. Journal of Qual. Theory of Diff. Equ. 31 (2012), 1–9.
  • [3] T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.
  • [4] F.D. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput. 162 (2005) 3, 1279–1302.
  • [5] F.D. Chen, J.L. Shi, Periodicity in a nonlinear predator-prey system with state dependent delays, Acta Math. Appl. Sin. Engl. Ser. 21 (2005) 1, 49–60.
  • [6] W. Cheung, J. Ren, W. Han, Positive periodic solutions for second-order differential equations with generalized neutral operator, The Australian Journal of Mathematical Analysis and Applications 6 (2009), 1–16.
  • [7] Y.M. Dib, M.R. Maroun, Y.N. Raffoul, Periodicity and stability in neutral nonlinear differential equations with functional delay, Electron. J. Differ. Equ. 142 (2005), 1–11.
  • [8] M. Fan, K. Wang, P.J.Y. Wong, R.P. Agarwal, Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments, Acta Math. Sin. Engl. Ser. 19 (2003) 4, 801–822.
  • [9] E.R. Kaufmann, Y.N. Raffoul, Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl. 319 (2006) 1, 315–325.
  • [10] E.R. Kaufmann, Y.N. Raffoul, Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale, Electron. J. Differ. Equ. 27 (2007), 1–12.
  • [11] E.R. Kaufmann, A nonlinear neutral periodic differential equation, Electron. J. Differ. Equ. 88 (2010), 1–8.
  • [12] W.T. Li, L.L. Wang, Existence and global attractively of positive periodic solutions of functional differential equations with feedback control, J. Comput. App. Math. 180 (2005), 293–309.
  • [13] Y. Liu, W. Ge, Positive periodic solutions of nonlinear duffing equations with delay and variable coefficients, Tamsui Oxf. J. Math. Sci. 20 (2004), 235–255.
  • [14] Y.N. Raffoul, Periodic solutions for neutral nonlinear differential equations with functional delay, Electron. J. Differ. Equ. 102 (2003), 1–7.
  • [15] Y.N. , Stability in neutral nonlinear differential equations with functional delays using fixed-point theory, Math. Comput. Modelling 40 (2004) 7–8, 691–700.
  • [16] Y.N. Raffoul, Positive periodic solutions in neutral nonlinear differential equations, E.J. Qualitative Theory of Diff. Equ. 16 (2007), 1–10.
  • [17] D.R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, 1974.
  • [18] H.Y.Wang, Positive periodic solutions of functional differential equations, J. Differential Equations 202 (2004), 354–366.
  • [19] Y. Wang, H. Lian, W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Applied Mathematics Letters 20 (2007), 110–115.
  • [20] E. Yankson, Positive periodic solutions for second-order neutral differential equations with functional delay, Electron. J. Differ. Equ. 14 (2012), 1–6.
  • [21] E. Yankson, Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay, Opuscula Math. 32 (2012) 3, 617–627
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1734973-86c3-42de-8aa6-053f12b67dff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.