PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical asymmetric double-image encryption and authentication in an interference-based scheme using sparse representation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report an optical asymmetric scheme for double-image encryption and authentication based on interference using sparse representation. We employ sparse representation and interference to process the Fresnel spectra related with the two original images, and then respectively acquire two ciphertexts and two pairs of private keys. Each original image possesses its corresponding two private keys. Furthermore, the decrypted image is compared with its corresponding plaintext with the aid of a nonlinear correlation for authentication. In the proposed scheme, any information concerning each primary image and comprising its silhouette cannot be recognized even though one, two, or even three masks of the two ciphertexts and two private keys are utilized for decryption. The Fresnel spectrum functions which have different diffraction distances enhance the security of the proposal significantly. Moreover, the proposal also avoids the crosstalk problem. The effectiveness and security of this proposed method are demonstrated via numerical simulations.
Czasopismo
Rocznik
Strony
497--510
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • College of Electrical and Information, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
autor
  • College of Electrical and Information, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
Bibliografia
  • [1] ALFALOU A., BROSSEAU C., Recent advances in optical image processing, Progress in Optics 60, 2015, pp. 119–262, DOI: 10.1016/bs.po.2015.02.002.
  • [2] ALFALOU A., BROSSEAU C., Optical image compression and encryption methods, Advances in Optics and Photonics 1(3), 2009, pp. 589–636, DOI: 10.1364/AOP.1.000589.
  • [3] CHEN W., JAVIDI B., CHEN X.D., Advances in optical security systems, Advances in Optics and Photonics 6(2), 2014, pp. 120–155, DOI: 10.1364/AOP.6.000120.
  • [4] LUAN G.Y., ZHONG Z., SHAN M.G., Optical multiple-image encryption in discrete multiple-parameter fractional Fourier transform scheme using complex encoding, theta modulation and spectral fusion, Optica Applicata 51(1), 2021, pp. 121–134, DOI: 10.37190/oa210110.
  • [5] SUI L.S., ZHAO X.Y., HUANG C.T., TIAN A.L., ANAND A., An optical multiple-image authentication based on transport of intensity equation, Optics and Lasers in Engineering 116, 2019, pp. 116–124, DOI: 10.1016/j.optlaseng.2019.01.006.
  • [6] PEREZ-CABRE E., CHO M.J., JAVIDI B., Information authentication using photon-counting double-random-phase encrypted images, Optics Letters 36(1), 2011, pp. 22–24, DOI: 10.1364/OL.36.000022.
  • [7] CARNICER A., MONTES-USATEGUI M., ARCOS S., JUVELLS I., Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys, Optics Letters 30(13), 2005, pp. 1644–1646, DOI: 10.1364/OL.30.001644.
  • [8] PENG X., WEI H.Z., ZHANG P., Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain, Optics Letters 31(22), 2006, pp. 3261–3263, DOI: 10.1364/OL.31.003261.
  • [9] REFREGIER P., JAVIDI B., Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters 20(7), 1995, pp. 767–769, DOI: 10.1364/OL.20.000767.
  • [10] RAJPUT S.K., NISHCHAL N.K., Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform, Applied Optics 52(4), 2013, pp. 871–878, DOI: 10.1364/AO.52.000871.
  • [11] LI Y.B., ZHANG F., LI Y.C., TAO R., Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform, Optics and Lasers in Engineering 72, 2015, pp. 18–25, DOI: 10.1016/j.optlaseng.2015.03.027.
  • [12] CHEN J.X., ZHU Z.L., LIU Z.J., FU C., ZHANG L.B., YU H., A novel double-image encryption scheme based on cross-image pixel scrambling in gyrator domains, Optics Express 22(6), 2014, pp. 7349–7361, DOI: 10.1364/OE.22.007349.
  • [13] ZHONG Z., ZHANG Y.J., SHAN M.G., WANG Y., ZHANG Y.B., XIE H., Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform, Journal of Optics 16(12), 2014, article no. 125404, DOI: 10.1088/2040-8978/16/12/125404.
  • [14] SUI L.S., DUAN K.K., LIANG J.L., HEI X.H., Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps, Optics Express 22(9), 2014, pp. 10605–10621,DOI: 10.1364/OE.22.010605.
  • [15] CARNICER A., HASSANFIROOZI A., LATORRE-CARMONA P., HUANG Y.P., JAVIDI B., Security authentication using phase-encoded nanoparticle structures and polarized light, Optics Letters 40(2), 2015, pp. 135–138, DOI: 10.1364/OL.40.000135.
  • [16] FATIMA A., NISHCHAL N.K., Optical image security using Stokes polarimetry of spatially variant polarized beam, Optics Communications 417, 2018, pp. 30–36, DOI: 10.1016/j.optcom.2018.02.030.
  • [17] MALUENDA D., CARNICER A., MARTINEZ-HERRERO R., JUVELLS I., JAVIDI B., Optical encryption using photon-counting polarimetric imaging, Optics Express 23(2), 2015, pp. 655–666, DOI: 10.1364/OE.23.000655.
  • [18] MOON I., YI F., HAN M., LEE J., Efficient asymmetric image authentication schemes based on photon counting-double random phase encoding and RSA algorithms, Applied Optics 55(16), 2016, pp. 4328–4335, DOI: 10.1364/AO.55.004328.
  • [19] CHEN L.F., CHANG G.J., HE B.Y., MAO H.D., ZHAO D.M., Optical image conversion and encryption by diffraction, phase retrieval algorithm and incoherent superposition, Optics and Lasers in Engineering 88, 2017, pp. 221–232, DOI: 10.1016/j.optlaseng.2016.08.013.
  • [20] SU Y.G., TANG C., CHEN X., LI B.Y., XU W.J., LEI Z.K., Cascaded Fresnel holographic image encryption scheme based on a constrained optimization algorithm and Henon map, Optics and Lasers in Engineering 88, 2017, pp. 20–27, DOI: 10.1016/j.optlaseng.2016.07.012.
  • [21] LI X.W., XIAO D., WANG Q.H., Error-free holographic frames encryption with CA pixel-permutation encoding algorithm, Optics and Lasers in Engineering 100, 2018, pp. 200–207, DOI: 10.1016/j.optlaseng.2017.08.018.
  • [22] CHEN Y., LIU Q., WANG J., WANG Q.H., Single-channel optical encryption of color image using chessboard grating and diffraction imaging scheme, Optical Engineering 56(12), 2017, article no. 123106, DOI: 10.1117/1.OE.56.12.123106.
  • [23] RAWAT N., HWANG I.C., SHI Y., LEE B.G., Optical image encryption via photon-counting imaging and compressive sensing based ptychography, Journal of Optics 17(6), 2015, article no. 065704, DOI: 10.1088/2040-8978/17/6/065704.
  • [24] WANG Y., QUAN C., TAY C.J., Asymmetric optical image encryption based on an improved amplitude–phase retrieval algorithm, Optics and Lasers in Engineering 78, 2016, pp. 8–16, DOI: 10.1016/j.optlaseng.2015.09.008.
  • [25] QIN Y., WANG Z.P., WANG H.J., GONG Q., ZHOU N.R., Robust information encryption diffractive-imaging-based scheme with special phase retrieval algorithm for a customized data container, Optics and Lasers in Engineering 105, 2018, pp. 118–124, DOI: 10.1016/j.optlaseng.2018.01.014.
  • [26] ZHANG Y., WANG B., Optical image encryption based on interference, Optics Letters 33(21), 2008, pp. 2443–2445, DOI: 10.1364/OL.33.002443.
  • [27] ZHONG Z., QIN H.T., LIU L., ZHANG Y.B., SHAN M.G., Silhouette-free image encryption using interference in the multiple-parameter fractional Fourier transform domain, Optics Express 25(6), 2017, pp. 6974–6982, DOI: 10.1364/OE.25.006974.
  • [28] WANG Y., QUAN C.G., Interference-based optical image encryption with silhouette removal by amplitude modulation, Journal of Optics 19(10), 2017, article no. 105701, DOI: 10.1088/2040-8986/aa7e37.
  • [29] QIN Y., JIANG H.L., GONG Q., Interference-based multiple-image encryption by phase-only mask multiplexing with high quality retrieved images, Optics and Lasers in Engineering 62, 2014, pp. 95–102, DOI: 10.1016/j.optlaseng.2014.05.010.
  • [30] ZHANG X., MENG X.F., WANG Y.R., YANG X.L., YIN Y.K., LI X.Y., PENG X., HE W.Q., DONG G.Y., CHEN H.Y., Hierarchical multiple-image encryption based on the cascaded interference structure and vector stochastic decomposition algorithm, Optics and Lasers in Engineering 107, 2018, pp. 258–264, DOI: 10.1016/j.optlaseng.2018.04.002.
  • [31] QIN Y., GONG Q., Interference-based multiple-image encryption with silhouette removal by position multiplexing, Applied Optics 52(17), 2013, pp. 3987–3992, DOI: 10.1364/AO.52.003987.
  • [32] CHEN W., CHEN X.D., Optical multiple-image encryption based on multiplane phase retrieval and interference, Journal of Optics 13(11), 2011, article no. 115401, DOI: 10.1088/2040-8978/13/11/115401.
  • [33] SHAN M.G., LIU L., LIU B., ZHONG Z., Security-enhanced optical interference-based multiple-image encryption using a modified multiplane phase retrieval algorithm, Optical Engineering 57(8), 2018, article no. 083103, DOI: 10.1117/1.OE.57.8.083103.
  • [34] CHEN W., CHEN X.D., STERN A., JAVIDI B., Phase-modulated optical system with sparse representation for information encoding and authentication, IEEE Photonics Journal 5(2), 2013, article no. 6900113, DOI: 10.1109/JPHOT.2013.2258144.
  • [35] WANG X.G., ZHOU G.Q., DAI C.Q., Optical double binary amplitude mask structure for security authentication, IEEE Photonics Journal 8(6), 2016, article no. 7805807, DOI: 10.1109/JPHOT.2016.2628798.
  • [36] WANG H.J., QIN Y., HUANG Y.D., WANG Z.P., ZHANG Y.Y., Multiple-image encryption and authentication in interference-based scheme by aid of space multiplexing, Optics and Laser Technology 95, 2017, pp. 63–71, DOI: 10.1016/j.optlastec.2017.04.019.
  • [37] GONG Q., LIU X.Y., LI G.Q., QIN Y., Multiple-image encryption and authentication with sparse representation by space multiplexing, Applied Optics 52(31), 2013, pp. 7486–7493, DOI: 10.1364/AO.52.007486.
  • [38] BARFUNGPA S.P., ABUTURAB M.R., Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum, Optical and Quantum Electronics 48(11), 2016, article no. 520, DOI: 10.1007/s11082-016-0786-5.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1721d50-ad44-4bd8-be6f-f6c53776f01a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.