PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aeroelastic analysis of helicopter rotor using virtual blade model and equivalent beam model of a blade

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern helicopter rotor blades design requires taking into account complex aeroelastic phenomena. Sophisticated computational fluid dynamics and structural dynamics models, available on the market, coupled together enable such analysis with very high fidelity. However, the computational cost of this type of simulation is usually very high and for this reason, it cannot be used in interactive design process or optimization run. Complex Fluid Structure Interaction models are excellent tools for validation purposes, but the design process requires simpler models with lower computational cost and still relatively high accuracy and capabilities. The paper presents a new efficient methodology for calculating helicopter rotor loads, deformations and performance. It uses the well-known Navier-Stokes equations aerodynamic solver – ANSYS Fluent, and modified Virtual Blade Model (based on Blade Element Theory) for rotor flow calculation. This connection guarantees exceptional capabilities and fidelity in comparison with simulation time. The dedicated structural dynamics solver, based on equivalent beam model of a blade and Finite Difference Method, was developed and coupled with CFD part using User Defined Functions in Fluent software. The accuracy of created module was validated with wind tunnel tests data of IS-2 helicopter rotor model, performed in Institute of Aviation. The results of calculations were compared with experimental data for a hover state and a forward flight with three different flight velocities. The comparisons showed very good agreement of the data in most of the analysed cases and pointed out new research possibilities. The presented aeroelastic helicopter rotor model combines all advantages of using three-dimensional Navier-Stokes solver with relatively low computational costs and high accuracy, confirmed by wind tunnel tests. It could be used successfully in helicopter rotor blades design process.
Słowa kluczowe
Twórcy
autor
  • Institute of Aviation Department of Aerodynamics and Flight Mechanics Krakowska Avenue 110/114, 02-256 Warsaw, Poland tel.:+48 22 8460011 ext. 364, fax: +48 22 8464432
Bibliografia
  • [1] Bibik, P., Czechyra, T., Narkiewicz, J., Stalewski, W., Wykorzystanie oprogramowania FLIGHTLAB i FLUENT w projektowaniu wirnika nośnego śmigłowca, Transactions of the Institute of Aviation, Vol. 194-195, pp. 137-145, Warsaw 2008.
  • [2] Czechyra, T., Badanie wpływu zaburzeń kształtu powierzchni nośnych na osiągi statków powietrznych, Institute of Aviation, Report No. 85/BA/04/P, Warsaw 2004.
  • [3] Czechyra, T., Eksperymentalne badania wpływu zaburzeń kształtu profili łopat na obciążenia modelu wirnika nośnego śmigłowca w zawisie, Transactions of the Institute of Aviation, Vol. 177-178, pp. 86-92, Warsaw 2004.
  • [4] Czechyra, T., Zadanie techniczne na projektowanie łopaty modelu wirnika nośnego śmigłowca, Institute of Aviation, Report No. 64/BA/02/P, Warsaw 2002.
  • [5] Grzegorczyk, K., Analiza aerodynamiczna własności śmigłowca z uwzględnieniem nadmuchu wirnika nośnego, Transactions of the Institute of Aviation, Vol. 219, pp. 176-181, Warsaw 2011.
  • [6] Grzegorczyk, K., Modelowanie lotu śmigłowca w warunkach występowania pierścienia wirowego za pomocą Virtual Blade Model, Modelowanie Inżynierskie, Vol. 45, pp. 177-184, Warsaw 2012.
  • [7] Johnson, W., Helicopter Theory, Dover Publications Inc., New York 1980.
  • [8] Krzyżanowski, A., Mechanika Lotu Śmigłowców, Wojskowa Akademia Techniczna, Warsaw 2010.
  • [9] Piechna, J., Rudniak, L., Możliwości wykorzystania pakietu Fluent do obliczeń aerodyna-micznych śmigłowców, Transactions of the Institute of Aviation, Vol. 184-185, pp. 72-76, Warsaw 2006.
  • [10] Stalewski, W., Zalewski, W., Symulacja pracy wirnika nośnego wiatrakowca w początkowej fazie pionowego startu, Transactions of the Institute of Aviation, Vol. 219, pp. 289-296, Warsaw 2011.
  • [11] Stalewski, W., Aerodynamic Design of Modern Gyroplane Main Rotors, Transactions of the Institute of Aviation, Vol. 242, pp. 80-93, Warsaw 2016.
  • [12] Stanisławski, J., Pattern of helicopter rotor loads and blade deformations in some states of flight envelope, Transactions of the Institute of Aviation, No. 1(238), pp. 70-90, Warsaw 2015.
  • [13] Stanisławski, J., Simulation investigation of tail rotor behavior in directional maneuver of helicopter, Transactions of the Institute of Aviation, Vol. 193, pp. 32-80, Warsaw 2008.
  • [14] Szabelski, K., Jancelewicz, B., Łucjanek, W., Wstęp do konstrukcji śmigłowców, Wydawnictwa Komunikacji i Łączności, Warsaw 1995.
  • [15] Zori, L. A. J., Rajagopalan, R. G., Navier-Stokes Calculation of Rotor-Airframe Interaction in Forward Flight, Journal of the American Helicopter Society, Vol. 40, pp. 57-67, 1995.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1717e2b-5b42-4ec2-bddd-b7ee7a9b7764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.