Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
: The aim of this study was to create a two-class brain-computer interface. As in the case of research on SSVEP stimuli flashing at different frequencies were presented to four subjects. Optimal SSVEP recognition results can be obtained from electrodes: O1, O2 and Oz. In this work SVM classifier with Bilinear Separation algorithm have been compared. The best result in the offline tests using Bilinear Separation was: average accuracy of stimuli recognition 93% and ITR 33.1 bit/min, SVM: 90% and 32.8 bit/min.
Wydawca
Czasopismo
Rocznik
Tom
Strony
51--53
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr., wzory
Twórcy
autor
- Poznan University of Technology, Institute of Electrical Engineering and Electronics, Division of Metrology and Optoelectronic, Piotrowo 3a, 60-965 Poznan
autor
- Poznan University of Technology, Institute of Electrical Engineering and Electronics, Division of Metrology and Optoelectronic, Piotrowo 3a, 60-965 Poznan
Bibliografia
- [1] Allison B., Luth T., Valbuena D., Teymourian A., Volosyak I., Graser A.: BCI demographics: How many (and what kinds of) people can use an SSVEP BCI?, Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 18, no. 2, pp. 107–116, 2010.
- [2] Bakardjian H., Tanaka T., and Cichocki A.: Optimization of SSVEP brain responses with application to eight-command brain–computer interface, Neuroscience letters, vol. 469, no. 1, pp. 34–38, 2010.
- [3] Kelly S. P., Lalor E. C., Reilly R. B., and Foxe J. J.: Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication, Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 13, no. 2, pp. 172–178, 2005.
- [4] Kołodziej, Marcin, A. Majkowski, and R. J. Rak.: Wykorzystanie maszyny wektorów wspierających (SVM) do klasyfikacji sygnału EEG na użytek interfejsu mózg-komputer, Pomiary, Automatyka, Kontrola 57, pp 1546-1548, 2011.
- [5] Kristin P. Bennett, O. L. Mangasarian: Bilinear separation of two sets in n-space, Computational Optimization and Applications, Volume 2, Issue 3, pp 207-227, 1993.
- [6] Kuś R., Duszyk A., Milanowski P., Łabęcki M., Bierzyńska M., Radzikowska Z., Michalska M., Żygierewicz J., Suffczynski P., Durka, P. J.: On the quantification of SSVEP frequency responses in human EEG in realistic BCI conditions, PloS one, 8(10), e77536, 2013.
- [7] Lalor E. C, Kelly SP, Finucane C, Burke R, Smith R, Reilly R. B, et al.: Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment, EURASIP journal on applied signal processing, pp. 3156-3164, 2005.
- [8] Maggi L., Parini S., Piccini L., Panfili G., and Andreoni G.: A four command BCI system based on the SSVEP protocol, Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, pp. 1264–1267, 2006.
- [9] Martinez P., Bakardjian H., and Cichocki A.: Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm, Computational intelligence and neuroscience, vol. 2007, pp. 13–13, 2007.
- [10] Vialatte F.-B., Maurice M., Dauwels J., and Cichocki A.: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives, Progress in neurobiology, vol. 90, no. 4, pp. 418–438, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e16c77c5-d86a-4658-ac20-ba03b9f0c63d