PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal/Composite Hybrids for Lightweight Applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasing mechanical, economic and environmental requirements lead to multi material designs, wherein different classes of materials and manufacturing processes are merged to realize lightweight components with a high level of functional integration. Due to the good specific characteristics and its suitability for mass production, the use of continuous fiber reinforced thermoplastics in conjunction with isotropic materials, such as steel or aluminum, offers advantages for lightweight components. Therefore, the aim of the present article was the development of innovative hybrid laminates with low residual stresses, made of steel sheets/foils and thermoplastic carbon fiber reinforced polyamide 6. Mechanical properties were examined in three point bending tests to obtain the Young's modulus as well as the flexural stress and flexural strain of the novel material.
Rocznik
Strony
117--123
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
autor
  • Technische Universität Chemnitz
  • Technische Universität Chemnitz
autor
  • Technische Universität Chemnitz
autor
  • Technische Universität Chemnitz
autor
  • Technische Universität Chemnitz
autor
  • Politechnika Opolska
autor
  • Politechnika Opolska
autor
  • Politechnika Opolska
Bibliografia
  • 1. Alderliesten R.C., Benedictus R., 2008 Fiber/metal composite technology for future primary aircraft structures, Journal of Aircraft, Vol. 45, No. 4 (2008), pp. 1182-1189, ISSN: 0021-8669, EISSN: 1533-3868
  • 2. Döhler C., Hälsig A., et. all, 2014, Energy-Efficient Joining Technologies to Realise Dissimilar Joints of Metal and Fibre-Reinforced Plastics, NEUGEBAUER, R. ; DROSSEL, W. G. (eds.): 3rd International Colloquium of the Cluster of Excellence eniPROD. Chemnitz: Verlag Wissenschaftliche Scripten, 2014 pp. 447–459, ISBN 978-3-95735-005-3, ISBN: 978-3-95735-005-3
  • 3. Kim S.Y., Choi W.J., Park S.Y., 2007, Spring-back characteristics of fiber metal laminate (GLARE) in brake forming process, The International Journal of Advanced Manufacturing Technology, Vol. 32 (2007), No. 5-6, pp. 445–451, ISSN 0268-3768 (Print), 1433-3015 (Online)
  • 4. N N., 2007, ALUCOBOND®, Product information, ALCAN Singen GmbH,
  • 5. Osieck, T., Seidlitz H., et all, 2014, Customized Metal/Composite Hybrids for Automotive Applications, KAWALLA, R. (ed.): AutoMetForm/SFU 2014. New Materials for Vehicle Components. Freiberg: Technische Universität Bergakademie Freiberg, 2014, ISBN 978-3-86012-490-1, pp. 29–36, ISBN 978-3-86012-490-1
  • 6. Park S. Y., Choi W. J., et. all, 2010, Effects of surface pretreatment and void content on GLARE laminate process characteristics, Journal of Materials Processing Technology, No. 210, 2010, pp. 1008–1016, doi:10.1016/j.jmatprotec.2010.01.017
  • 7. Pieronek D., Böger T., Röttger R.P, 2012, Modeling approach for steel sandwich materials in automotive crash simulations. In: 11. LS-DYNA Forum 2012. Ulm, 2012
  • 8. Qaiser M. H., Umar S., Nauman S., 2014, Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components, IOP Conference Series: Materials Science and Engineering, Vol. 60, Iss. 1, 2014. pp. 1-6, doi:10.1088/1757-899X/60/1/012050
  • 9. Sathyaseelan P., Logesh K., et. all., 2015, Experimental and finite element analysis of fibre metal laminates (FML's) subjected to tensile, flexural and impact loadings with different stacking sequence, International Journal of Mechanical and Mechatronics Engineering, Vol. 15, Iss.3, 2015, pp. 23-27, ISSN: 2227-2771 (Print), 2077-124X (Online)
  • 10. Seidlitz H., Gerstenberger C., et. all., 2015, High-performance lightweight structures with Fiber Reinforced Thermoplastics and Structured Metal Thin Sheets, Journal of Materials Science Research vol. 4 (2015), No. 1, doi:10.5539/jmsr.v4n1p28
  • 11. Seidlitz H., Kroll L., 2014, High-strength mixed constructions with thermoplastic fibre composites and metals, Joining Plastic vol. 2 (2014), No. 66, pp. 106–111, ISSN 1864-3450
  • 12. Sinmazcelik T., Avcu E., et. all, 2011, A review: Fibre metal laminates, background, bonding types and applied test methods, Materials and Design vol. 32 (2011), pp. 3671-3685, doi:10.1016/j.matdes.2011.03.011
  • 13. Wielage B., Nestler D., et. all, 2011, CAPAAL and CAPET – New Materials of High-Strength, High-Stiff Hybrid Laminates, Integrated Systems, Design and Technology 2010. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011, pp. 23–35, ISBN: 978-3-642-17383-7 (Print), 978-3-642-17384-4 (Online)
  • 14. Wu G., Yang J. -M., 2005, The mechanical behavior of GLARE laminates for aircraft structures, JOM vol. 57 (2005), No. 1, pp. 72–79, ISSN: 1047-4838 (Print), 1543-1851 (Online)
  • 15. Zafar R., Lihui L., et. all, 2014, Formability analysis of Fiber Metal Laminates using rubber sheet and forming techniques, Proceedings of 2014 11th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad; Pakistan, 2014, pp. 44-47, doi: 10.1109/IBCAST.2014.6778118
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e16abff0-3b40-4ffe-9d5e-08c930edcc21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.