Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper shows that it is possible to correct the identification model of the Day-Ahead Market system by employing the Perceptron Artificial Neural Network. First, a simulation model of the DAM system at the POLPX has been built, and then it has been shown how the model can be corrected so that the weighted average electricity prices obtained are close enough to the exchange-quoted ones. Next, simulation, comparative and sensitivity studies of the model were carried out for forecast data for four characteristic hours: 6, 12, 18, and 24 of the following year. Many interesting research results were obtained, including a result of sensitivity testing it was shown that the obtained models can be used in forecasting studies.
Rocznik
Tom
Strony
85--105
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- PhD Student at Computer Science Institute, Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences, Institute of Computer Science, ul. 3 Maja 54, 08-110 Siedlce, Poland
Bibliografia
- 1. Aggarwal S.K., Saini L.M., Kumar A.: Electricity price forecasting in deregulated markets: A review and evaluation, International Journal of Electrical Power & Energy Systems, No. 31, 2009, pp. 13-22.
- 2. Box G. E. P., Jenkins G. M.: Analiza szeregów czasowych. Prognozowanie i sterowanie. (Eng. Time series analysis. Forecasting and control), PWN, Warszawa, 1983, pages 574.
- 3. Conejo A. J., Plazas M. A. , [et all]: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Transaction on Power System, No. 20(2), 2005, pp.1035–1042.
- 4. Ejdys J., Halicka K., Godlewska J.: Prognozowanie cen energii elektrycznej na giełdzie energii (Eng. Forecasting electricity prices on the power exchange). Zeszyty Naukowe Politechniki Śląskiej, Seria: Organizacja i Zarządzanie, Zeszyt 77, Nr kol. 1927, 2015, pp. 1-10.
- 5. Guide for MATLAB, Guide for Simulink, Guide for System Identification Toolbox, Guide for Control System Toolbox, Guide for Neural Network Toolbox. The MathWorks®. Getting Started Guide, 2021b.
- 6. Halicka K.: Skuteczność prognozowania w zarządzaniu transakcjami na giełdzie energii (Eng. Effectiveness of forecasting in managing transactions on the power exchange), rozprawa doktorska pod kierunkiem prof. dr hab. inż. Joanicjusza Nazarko, Wydział Zarządzania Uniwersytetu Warszawskiego, Warszawa, 2006, pages 207.
- 7. Jiang L.L., Hu G.: Day-Ahead Price Forcasting for Electricity Market using Long-Short Term Memory Recurent Neural Network. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapure, Nov. 19-21, IEEE Digital Library, 2018, pp. 949-954.
- 8. Kowal W.: Skuteczność i efektywność – zróżnicowane aspekty interpretacji (Eng. Effectiveness and efficiency - various aspects of interpretation), Kwartalnik Naukowy pt. Organizacja i Kierowanie. Nr 4 (157), SGH, Warszawa, 2014, pp. 12-23.
- 9. Labib N., Wadid E.: Comparative study of Intelligent Systems for Management of GIT Cancers, MATEC Web of Conferences 125, CSCC 2017, 2017, pp. 1-6.
- 10. Mandal P., Senyju T. [et all]: A Novel Approach to Forecast Electricity Price for PJM Using Neural Network and Similar Days Method, IEEE Transactions on Power Systems, 22(4), 2007, pp. 2058 – 2065.
- 11. Marlęga R.: State-space model and implementation Polish Power Exchange in MATLAB and Simulnk environments. Information Systems in Management. Vol. 6, No. 4, 2017, pp. 294-308.
- 12. Marlęga R., Tchórzewski J.: Identification modeling of Polish electric power exchange, Information Systems in Management, No. 2, Vol. 5, 2016, pp. 195-204.
- 13. Mandal P., Haque A.U., Meng J., Srivastava A.K., Martinez R.: A Novel Hybrid Approach Using Wavelet, Firefly Algorithm, and Fuzzy ARTMAP for Day-Ahead Electricity Price Forecasting, IEEE Transactions on Power Systems, Vol. 28. No. 2, 2013, pp. 1041-1051.
- 14. Merayo D., Rodriguez-Prieto A., Camacho A.M.: Comparative analysis of artificial intelligence techniques for material selection applied to manufacturing in Industry 4.0, Procedia Manufacturing no. 41, 2019, pp. 42-49.
- 15. Mielczarski W.: Rynki energii elektrycznej. Wybrane aspekty techniczne i ekonomiczne (Eng. Electricity markets. Selected technical and economic aspects), ARE S.A. Warszawa 2000, pages 321.
- 16. Moghaddam R.K., Yazdan N. M.: A Comparative Analisis of Artificial Intelligence - Based Methods for Fault Diagnosis of Mechanical Systems, Mechanics and Mechanical Engineering, nr 23, Sciendo, 2019, pp. 113-124.
- 17. Mynarski S.: Modelowanie rynku w ujęciu systemowym (Eng. System modeling of the market), PWN, Warszawa, 1982, pages 182.
- 18. Nazarko J. [red. nauk.]: Prognozowanie w zarządzaniu przedsiębiorstwem, Cz. 4. Prognozowanie na podstawie modeli trendu (Eng. Forecasting in enterprise management, Cz. 4. Forecasting based on trend models), Oficyna Wydawnicza Politechniki Białostockiej, Białystok, 2018, pages 182.
- 19. Popławski T., Weżgowiec M.: Krótkoterminowe prognozy cen na Towarowej Giełdzie Energii z wykorzystaniem modelu trendu pełzającego (Eng. Short-term price forecasts on the Polish Power Exchange using the crawling trend model), Przegląd Elektrotechniczny, R. 91, Nr 12, 2015, pp. 267-270.
- 20. Ruciński D.: The Influence of the Artificial Neural Network type on the quality of learning on the Day-Ahead Market model at Polish Power Exchange joint-stock company. Studia Informatica. Systems and Information Technology. No. 1-2 (23), 2019, pp. 77-93.
- 21. Ruciński D.: Neural modeling of electricity prices quoted on the Day-Ahead Market of TGE S.A. shaped by environmental and economic factors. Studia Informatica. Systems and Information Technology. No. 1-2 (24), 2020, pp. 25-36.
- 22. Staniszewski R.: Sterowanie procesem eksploatacji (Eng. Control of the operation process), WNT, Warszawa, 1988, pages 475.
- 23. Tchórzewski J.: Inżynieria rozwoju systemów (Eng. Systems development engineering), WSR-P w Siedlcach, Siedlce 1990, pages 279.
- 24. Tchórzewski J.: Cybernetyka życia i rozwoju systemów (Eng. Cybernetics of life and systems development), WSRP w Siedlcach, Siedlce 1992, pages 408.
- 25. Tchórzewski J.: Rozwój system elektroenergetycznego w ujęciu teorii sterowania i systemów (Eng. Development of the power system in terms of control theory and systems), OW PWr, Wrocław 2013, pages 190.
- 26. Tchórzewski J.: Metody sztucznej inteligencji i informatyki kwantowej w ujęciu teorii sterowania i systemów (Eng. Methods of artificial intelligence and quantum computing in terms of control theory and systems), Wydawnictwo Naukowe UPH, Siedlce 2021, pages 343.
- 27. Tchórzewski J. and Marlęga R.: The Day-Ahead Market System Simulation Model in the MATLAB and Simulink Environment, 2021 Progress in Applied Electrical Engineering (PAEE), 2021, pp. 1-8.
- 28. Tchórzewski J., Marlęga R.: Modeling and simulation of the control- and the systems- inspired of the Polish Electricity Exchange, 2017 Progress in Applied Electrical Engineering (PAEE), IEEE Digital Library, 2017, pp. 1-6.
- 29. Tchórzewski J., Marlęga R., The Management System of the Polish Electricity Exchange from the Viewpoint of the Control and Systems Theory,16th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, IEEE Xplore Digital Library, 2019, pp. 1-5.
- 30. Tchórzewski J., Ruciński D.: Modeling and simulation inspired by quantum methods of the Polish Electricity Stock Exchange, Progress in Applied Electrical Engineering, 2017, pp. 1-6.
- 31. Trusz M., Tserakh U.: GARCH(1,1) models with stable residuals. Studia Informatica. Systems and Information Technology, No. 1-2(22), 2017, pp. 47-57.
- 32. Voronin S.: Price spike forecasting in a competitive day-ahead energy market. Acta Universitatis, Lappeenranta University of Technology, 2013, pages 177.
- 33. www.tge.pl – Towarowa Giełda Energii S.A. (Eng. Towarowa Giełda Energii Joint-Stock Company), website [access: 2019-2022].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e168bce1-7e45-467a-8ee3-92306b185ef0