PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photovoltaic panels cooling technologies: Comprehensive review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The solar radiation absorbed by photovoltaic panels is not fully utilized in the production of electricity. When the photovoltaic panels are exposed to solar radiation, part of the energy of the incident radiation is transformed into heat accumulated inside these panels. The heat accumulated inside the photovoltaic panels causes two types of losses. The first type of losses is the increase in the operating temperature of the panels and the deterioration of their efficiency and life span. The second type of losses explains that part of the energy of the incident radiation is transformed into heat inside the panels and does not contribute to the production of electrical energy. There are several cooling systems that have been applied to photovoltaic panels for the purpose of regulating their temperature including air, water, and nanofluid cooling systems, which are mostly done by placing a solar collector in the back side of the photovoltaic panels (PV/T). There is also a recently used system that uses phase change material (PCM) in cooling. This paper provides a comprehensive review of several cooling methods and their improvements that researchers have focused on. Through this review, it is clear that the best improvement in the performance of the photovoltaic panel occurs when using PCM because of the high heat transfer coefficient of these materials. Performance improves more when the addition of nanoparticles to the phase change material (PCM-Np) and also when merging (PCM) with (PV/T).
Rocznik
Strony
581--617
Opis fizyczny
Bibliogr. 127 poz., rys.
Twórcy
  • Mechanical Engineering Department, University of Technology – Iraq, Baghdad 10066, Iraq
  • Mechanical Engineering Department, University of Technology – Iraq, Baghdad 10066, Iraq
  • Mechanical Engineering Department, University of Technology – Iraq, Baghdad 10066, Iraq
Bibliografia
  • [1] Duffie J.A., Beckman W.A., Blair N.: Solar Engineering of Thermal Processes, Photovoltaics and Wind. Wiley, 2020.
  • [2] Krawczyk P., Badyda K.: Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer. Arch. Thermodyn.32(2011), 4, 3–16. doi: 10.2478/v10173-011-0028-y
  • [3] Al-Maliki W.A.K., Mahmoud N.S., Al-Khafaji H.M., Alobaid F., Epple B.: Design and implementation of the solar field and thermal storage system controllers for a parabolic trough solar power plant. Appl. Sci. 11(2021), 13, 6155. doi:10.3390/app11136155
  • [4] Kadhim S.A., Ibrahim O.A.A.M.: Improving the thermal efficiency of flat plate solar collector using nano-fluids as a working fluids: A Review. Iraqi J. Ind. Res.8(2021), 3, 49–60. doi: 10.53523/ijoirVol8I3ID86
  • [5] Al-Ghezi M.K., Ahmed R.T., Chaichan M.T. The influence of temperature and irradiance on performance of the photovoltaic panel in the middle of Iraq. Int. J. Renew. Energ. Dev. 11(2022), 2, 501–513. doi: 10.14710/ijred.2022.43713
  • [6] Kadhim S.A., Al-Ghezi M.K., Shehab W.Y.: Optimum orientation of non-tracking solar applications in Baghdad City. Int. J. Heat Technol. 41(2023), 1, 125–134. doi:10.18280/ijht.410113
  • [7] Patel M.R., Beik O.: Wind and Solar Power Systems: Design, Analysis, and Operation. CRC, 2021.
  • [8] Armaroli N., Balzani V.: Towards an electricity-powered world. Energ. Environ. Sci. 4(2011), 9, 3193–3222. doi: 10.1039/C1EE01249E
  • [9] Diwania S., Agrawal S., Siddiqui A.S., Singh S.: Photovoltaic–thermal (PV/T) technology: a comprehensive review on applications and its advancement. Int. J. Energ. Environ. Eng. 11(2020), 1, 33–54. doi: 10.1007/s40095-019-00327-y
  • [10] IEA: Status of Power System Transformation 2019. IEA, Paris 2019.
  • [11] Gielen D., Gorini R., Wagner N., Leme R., Gutierrez L., Prakash G., Renner M.: Global Energy Transformation: A Roadmap to 2050. IRENA, 2019.
  • [12] Hosenuzzaman M., Rahim N.A., Selvaraj J., Hasanuzzaman M., Malek A.A., Nahar A.: Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sust. Energ. Rev. 41(2015). 284–297. doi:10.1016/j.rser.2014.08.046
  • [13] Häberlin, H.: Photovoltaics: System Design and Practice. John Wiley & Sons, 2012
  • [14] Al Tarabsheh A., Voutetakisb S., Papadopoulosb A.I., Seferlisb P., Etiera I., Saraereha O.: Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells. Chem. Eng. T. 35(2013), 1387–1392. doi:10.3303/CET1335231
  • [15] Teo H.G., Lee P.S., Hawlader M.N.A.: An active cooling system for photovoltaic modules. Appl. Energ. 90(2012), 1, 309–315. doi: 10.1016/j.apenergy.2011.01.017
  • [16] Agrawal B., Tiwari G. N.: Life cycle cost assessment of building integrated photovoltaic thermal (BIPVT) systems. Energ. Buildings 42(2010), 9, 1472–1481. doi:10.1016/j.enbuild.2010.03.017
  • [17] Islam M.M., Pandey A.K., Hasanuzzaman M., Rahim N.A.: Recent progresses and achievements in photovoltaic-phase change material technology: a review with special treatment on photovoltaic thermal-phase change material systems. Energ. Convers. Manage. 126(2016), 177–204. doi: 10.1016/j.enconman.2016.07.075
  • [18] Kalogirou S.A., Tripanagnostopoulos Y.: Hybrid PV/T solar systems for domestic hot water and electricity production. Energ. Convers. Manage. 47(2006), 18-19,3368–3382. doi: 10.1016/j.enconman.2006.01.012
  • [19] Mortezapour H., Ghobadian B., Minaei S., Khoshtaghaza M.H.: Saffron drying with a heat pump–assisted hybrid photovoltaic–thermal solar dryer. Dry. Technol. 30(2012), 6, 560–566. doi: 10.1080/07373937.2011.645261
  • [20] Lin W., Ma Z., Sohel M.I., Cooper P.: Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials. Energ. Convers. Manage. 88(2014), 218–230. doi: 10.1016/j.enconman.2014.08.019
  • [21] Sathe T.M., Dhoble A.S.: A review on recent advancements in photovoltaic thermal techniques. Renew. Sust. Energ. Rev. 76(2017), 645–672. doi: 10.1016/j.rser.2017.03.075
  • [22] Tonui J.K., Tripanagnostopoulos Y.: Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renew. Energ. 32(2007), 4, 623–637. doi: 10.1016/j.renene.2006.03.006
  • [23] Sahay A., Sethi V. K., Tiwari A.C., Pandey M.: A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS). Renew. Sust. Energ. Rev. 42(2015), 306–312. doi: 10.1016/j.rser.2014.10.009
  • [24] Al-Waeli A.H., Kazem H.A., Sopian K., Chaichan M.T.: Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia. Int. J. Sustain. Energ. 37(2018), 6, 558–575. doi: 10.1080/14786451.2017.1323900
  • [25] Devendiran D.K., Amirtham V.A.: A review on preparation, characterization, properties and applications of nanofluids. Renew. Sust. Energ. Rev. 60(2016), 21–40.doi: 10.1016/j.rser.2016.01.055
  • [26] Ebrahimnia-Bajestan E., Moghadam M. C., Niazmand H., Daungthongsuk W., Wongwises S.: Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. Int. J. Heat Mass Tran.92(2016), 1041–1052. doi: 10.1016/j.ijheatmasstransfer.2015.08.107
  • [27] Raju M., Sarma R.N., Suryan A., Nair P.P., Nižetić S.: Investigation of optimal water utilization for water spray cooled photovoltaic panel: A three-dimensional computational study. Sust. Energ. Tech. As. 51(2022), 101975. doi: 10.1016/j.seta.2022.101975
  • [28] Yildirim M.A., Cebula A., Sułowicz M.: A cooling design for photovoltaic panels– Water-based PV/T system. Energy 256(2022), 124654. doi: 10.1016/j.energy.2022.124654
  • [29] Singh K., Singh S., Kandpal D.C., Kumar R.: Experimental performance study of photovoltaic solar panel with and without water circulation. Mater. Today-Proc.46(2021), 6822–6827. doi: 10.1016/j.matpr.2021.04.393
  • [30] Mohammed M.F., Daud H.A., Ekaab N.S.: Numerical study of cooling system for photovoltaic thermal collector. J. Eng. Sci. Technol. 16(2021), 6, 4817–4832.
  • [31] Karami B., Azimi N., Ahmadi S.: Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material. Renew. Energ. 178(2021),25–49. doi: 10.1016/j.renene.2021.06.067
  • [32] Al-Waeli A.H., Chaichan M.T., Sopian K., Kazem H.A., Mahood H.B., Khadom A.A.: Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol. Energy 177(2019), 178–191. doi: 10.1016/j.solener.2018.11.016
  • [33] Chintakrinda K., Weinstein R.D., Fleischer A.S.: A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int. J. Therm. Sci. 50(2011),1639–1647. doi: 10.1016/j.ijthermalsci.2011.04.005
  • [34] Al Hariri A., Selimli S., Dumrul H.: Effectiveness of heat sink fin position on photovoltaic thermal collector cooling supported by paraffin and steel foam: An experimental study. Appl. Therm. Eng. 213(2022), 118784. doi: 10.1016/j.applthermaleng.2022.118784
  • [35] Siahkamari L., Rahimi M., Azimi N., Banibayat M.: Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system. Int. Commun. Heat Mass 100(2019), 60–66. doi: 10.1016/j.icheat mass transfer.2018.12.020
  • [36] Al-Waeli A.H., Sopian K., Kazem H.A., Chaichan M.T.: Evaluation of the electrical performance of a photovoltaic thermal system using nano-enhanced paraffin and nanofluids. Case Stud. Therm. Eng. 21(2020), 100678. doi: 10.1016/j.csite.2020.100678
  • [37] Solanki C.S.: Solar Photovoltaics: Fundamentals, Technologies and Applications (3rd Edn.). PHI learning Pvt. Ltd., Delhi 2015.
  • [38] Smets A.H., Jäger K., Isabella O., Swaaij R.A., Zeman M.: Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. UIT Cambridge, 2015.
  • [39] Mukerjee A.K., Thakur N.: Photovoltaic Systems: Analysis and Design. PHI Learning Pvt. Ltd., Delhi 2011.
  • [40] Tiwari G.N., Dubey S.: Fundamentals of Photovoltaic Modules and Their Applications. RSC, 2009.
  • [41] Goswami D.Y.: Principles of Solar Engineering. CRC Press, 2015
  • [42] Kazem H.A., Chaichan M.T., Al-Waeli A.H.: Effect of CuO-water-ethylene glycol nanofluids on the performance of photovoltaic/thermal energy system: an experimental study. Energ. Source. A 44(2022), 2, 3673–3691. doi: 10.1080/15567036.2022.2070305
  • [43] Kaldellis J.K., Kapsali M., Kavadias K.A.: Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renew. Energ. 66(2014), 612–624. doi: 10.1016/j.renene.2013.12.041
  • [44] Fesharaki V.J., Dehghani M., Fesharaki J.J., Tavasoli H.: The effect of temperature on photovoltaic cell efficiency. In: Proc. 1st Int. Conf. on Emerging Trends in Energy Conservation ETEC, Tehran, 20-21, Nov. 2011.
  • [45] Bagienski W., Gupta M.C.: Temperature dependence of polymer/fullerene organic solar cells. Sol. Energ. Mat. Sol. C. 95(2011), 3, 933–941. doi: 10.1016/j.solmat.2010.11.026
  • [46] Wysocki J.J., Rappaport P.: Effect of temperature on photovoltaic solar energy conversion. J. Appl. Phys. 31(1960), 3, 571–578. doi: 10.1063/1.1735630
  • [47] Akhmad K., Kitamura A., Yamamoto F., Okamoto H., Takakura H., Hamakawa Y.: Outdoor performance of amorphous silicon and polycrystalline silicon PV modules. Sol. Energ. Mat. Sol. C. 46(1997), 3, 209–218. doi: 10.1016/S0927-0248(97)00003-2
  • [48] Radziemska E., Klugmann E.: Thermally affected parameters of the current–voltage characteristics of silicon photocell. Energ. Convers. Manage. 43(2002), 14, 1889–1900. doi: 10.1016/S0196-8904(01)00132-7
  • [49] Radziemska E.: The effect of temperature on the power drop in crystalline silicon solar cells. Renew. Energ. 28(2003), 1, 1–12. doi: 10.1016/S0960-1481(02)00015-0
  • [50] Meneses-Rodrıěguez D., Horley P.P., Gonzalez-Hernandez J., Vorobiev Y.V., Gorley P.N.: The effect of temperature on the power drop in crystalline silicon solar cells. Sol. Energy 78(2005), 2, 243–250. doi: 10.1016/j.solener.2004.05.016
  • [51] Brinkworth B.J., Sandberg M.: Design procedure for cooling ducts to minimise efficiency loss due to temperature rise in PV arrays. Sol. Energy 80(2006), 1, 89–103. doi: 10.1016/j.solener.2005.05.020
  • [52] Usami A., Seki S., Mita Y., Kobayashi H., Miyashiro H., Terada N.: Temperature dependence of open-circuit voltage in dye-sensitized solar cells. Sol. Energ. Mat. Sol. C. 83(2006), 6-7, 840–842. doi: 10.1016/j.solmat.2008.09.040
  • [53] Huang B.J., Yang P.E., Lin Y.P., Lin B.Y., Chen H.J., Lai R.C., Cheng J.S.: Solar cell junction temperature measurement of PV module. Sol. Energy 85(2011), 2,388–392. doi: 10.1016/j.solener.2010.11.006
  • [54] Singh P., Ravindra N.M.: Temperature dependence of solar cell performance – an analysis. Sol. Energ. Mat. Sol. C. 101(2012), 36–45. doi: 10.1016/j.solmat.2012.02.019
  • [55] Bandou F., Arab A.H., Belkaid M.S., Logerais P.O., Riou O., Charki A.: Evaluation performance of photovoltaic modules after a long time operation in Saharan environment. Int. J. Hydrogen Energ. 40(2015), 39, 13839–13848. doi:10.1016/j.ijhydene.2015.04.091
  • [56] Krauter S.: Increased electrical yield via water flow over the front of photovoltaic panels. Sol. Energ. Mat. Sol. C. 82(2004), 1-2, 131–137. doi: 10.1016/j.solmat.2004.01.011
  • [57] Vokas G., Christandonis N., Skittides F.: Hybrid photovoltaic–thermal systems for domestic heating and cooling – a theoretical approach. Sol. Energy 80(2006), 5,607–615. doi: 10.1016/j.solener.2005.03.011
  • [58] Michael J.J., Iniyan S., Goic R.: Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide. Renew. Sust. Energ. Rev. 51(2015), 62–88. doi:10.1016/j.rser.2015.06.022
  • [59] Chow T.T., He W., Ji J.: Hybrid photovoltaic-thermosyphon water heating system for residential application. Sol. Energy 80(2006), 3, 298–306. doi: 10.1016/j.solener.2005.02.003
  • [60] Huang B.J., Lin T.H., Hung W.C., Sun F.S.: Performance evaluation of solar photovoltaic/thermal systems. Sol. Energy 70(2001), 5, 443–448. doi: 10.1016/S0038-092X(00)00153-5
  • [61] Ji J., Han J., Chow T.T., Yi H., Lu J., He W., Sun W.: Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/waterheating collector system. Energ. Buildings 38(2006), 12, 1380–1387. doi: 10.1016/j.enbuild.2006.02.010
  • [62] Ibrahim A., Othman M.Y., Ruslan M. H., Alghoul M., Yahya M., Zaharim A., Sopian K.: Performance of photovoltaic thermal collector (PVT) with different absorbers design. Wseas Trans. Env. Dev. 5(2009), 3, 321–330.
  • [63] Bahaidarah H.M., Rehman S., Gandhidasan P., Tanweer B.: Experimental evaluation of the performance of a photovoltaic panel with water cooling. In: Proc.39st Photovoltaic Specialists Conf. (PVSC), IEEE, 2987-2991, June 2013. doi:10.1109/PVSC.2013.6745090
  • [64] Matias C.A., Santos L.M., Alves A.J., Calixto W.P.: Increasing photovoltaic panel power through water cooling technique. Trans. Env. Electr. Eng. 2(2017), 1, 60–66.
  • [65] Fakouriyan S., Saboohi Y., Fathi A.: Experimental analysis of a cooling system effect on photovoltaic panels’ efficiency and its preheating water production. Renew. Energ. 134(2017), 1362–1368. doi: 10.1016/j.renene.2018.09.054
  • [66] Moharram K.A., Abd-Elhady M.S., Kandil H.A., El-Sherif H.: Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Eng. J. 4(2013), 4,869–877. doi: 10.1016/j.asej.2013.03.005
  • [67] Nižetić S., Čoko D., Yadav A., Grubišić-Čabo F.: Water spray cooling technique applied on a photovoltaic panel: The performance response. Energ. Convers. Manage. 108(2016), 4, 287–296. doi: 10.1016/j.enconman.2015.10.079
  • [68] Mzad H., Otmani A.: Simulation of photovoltaic panel cooling beneath a single nozzle based on a configurations framework. Arch. Thermodyn. 42(2021), 1, 115–128. doi: 10.24425/ather.2021.136950
  • [69] Mehrotra S., Rawat P., Debbarma M., Sudhakar K.: Performance of a solar panel with water immersion cooling technique. Int. J. Sci. Env. Technol. 3(2014), 3, 1161–1172.
  • [70] Abdulgafar S.A., Omar O.S., Yousif K.M.: Improving the efficiency of polycrystalline solar panel via water immersion method. Int. J. Innov. Res. Sci. Eng. Technol. 3(2014), 1, 8127–8132.
  • [71] Aberoumand S., Ghamari S., Shabani B.: Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Sol. Energy 165(2018), 167–177. doi: 10.1016/j.solener.2018.03.028
  • [72] Al-Ghezi M.K., Abass K.I., Salam A.Q., Jawad R.S., Kazem H.A.: The possibilities of using nano-CuO as coolants for PVT system: An experimental study. In: J. Phys.: Conf. Series, IOP Publishing, 1973, 1, 012123, Aug. 2021. doi: 10.1088/1742-6596/1973/1/012123
  • [73] Murtadha T.K., dil Hussein A.A., Alalwany A.A., Alrwashdeh S.S., Ala’a M.: Improving the cooling performance of photovoltaic panels by using two passes circulation of titanium dioxide nanofluid. Case Stud. Therm. Eng. 36(2022), 102191. doi:10.1016/j.csite.2022.102191
  • [74] Sathyamurthy R., Kabeel A.E., Chamkha A., Karthick A., Muthu Manokar A.,Sumithra M.G.: Experimental investigation on cooling the photovoltaic panel usinghybrid nanofluids. Appl. Nanosci. 11(2021), 2, 363–374. doi: 10.1007/s13204-020-01598-2
  • [75] Ebaid M.S., Ghrair A.M., Al-Busoul M.: Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water-polyethylene glycol mixture and (Al2O3) nanofluid in water-cetyltrimethylammonium bromide mixture. Energ. Convers. Manage. 155(2018), 324–343. doi: 10.1016/j.enconman.2017.10.074
  • 76] Hussain F., Othman M.Y H., Sopian K., Yatim B., Ruslan H., Othman H.: Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector. Renew. Sust. Energ. Rev. 25(2013), 431–441. doi: 10.1016/j.rser.2013.04.014
  • [77] Kumar R., Rosen M.A.: Performance evaluation of a double pass PV/T solar air heater with and without fins. Appl. Therm. Eng. 31(2011), 8-9, 1402–1410. doi:10.1016/j.applthermaleng.2010.12.037
  • [78] Sopian K., Liu H.T., Kakac S., Veziroglu T.N.: Performance of a double pass photovoltaic thermal solar collector suitable for solar drying systems. Energ. Convers. Manage. 41(2000), 4, 353–365. doi: 10.1016/S0196-8904(99)00115-6
  • [79] Othman M.Y.H., Yatim B., Sopian K., Bakar, M.N.A.: Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renew. Energ. 30(2005), 13, 2005–2017. doi: 10.1016/j.renene.2004.10.007
  • [80] Tripanagnostopoulos Y.: Aspects and improvements of hybrid photovoltaic/thermal solar energy systems. Sol. Energy 81(2007), 9, 1117–1131. doi: 10.1016/j.solener.2007.04.002
  • [81] Sopian K., Alghoul M.A., Alfegi E.M., Sulaiman M.Y., Musa E.A.: Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media. Renew. Energ. 34(2009), 3, 640–645. doi: 10.1016/j.renene.2008.05.027
  • [82] Mohd Y.O., Hafidz R., Kamaruzzaman S., Jin G.L.: Performance study of photovoltaic-thermal (PV/T) solar collector with grooved absorber plate. Sains Malaysiana 38(2009), 4, 537–541.
  • [83] Hussain F., Othman M.Y., Yatim B., Ruslan H., Sopian K., Anuar Z., Khairuddin S.: Comparison study of air base photovoltaic/thermal (PV/T) collector with different design of heat exchanger. In: World Renew. Energ. Forum, WREF 1(2012),189–194.
  • [84] Mazón-Hernández R., García-Cascales J.R., Vera-García F., Káiser A.S., Zamora B.: Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream. Int. J. Photoenergy 2013(2013). doi: 10.1155/2013/830968
  • [85] Popovici C.G., Hudişteanu S.V., Mateescu T.D., Cherecheş N.C.: Efficiency improvement of photovoltaic panels by using air cooled heat sinks. Enrgy. Proced.85(2016), 425–432. doi: 10.1016/j.egypro.2015.12.223
  • [86] Senthil R., Patel A., Rao R., Ganeriwal S.: Melting behavior of phase change material in a solar vertical thermal energy storage with variable length fins added on the heat transfer tube surfaces. Int. J. Renew. Energ. Dev. 9(2020), 3, 361–367. doi:10.14710/ijred.2020.29879
  • [87] Tatsidjodoung P., Le Pierrès N., Luo L.: A review of potential materials for thermal energy storage in building applications. Renew. Sust. Energ. Rev. 18(2013), 327–349. doi: 10.1016/j.rser.2012.10.025
  • [88] Zhou D., Zhao C.Y., Tian Y.: Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energ. 92(2012), 593–605. doi:10.1016/j.apenergy.2011.08.025
  • [89] Ma T., Yang H., Zhang Y., Lu L., Wang X.: Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: a review and outlook. Renew. Sust. Energ. Rev. 43(2015), 1273–1284. doi:10.1016/j.rser.2014.12.003
  • [90] Wang F., Maidment G., Missenden J., Tozer R.: A review of research concerning the use of PCMs in air conditioning and refrigeration engineering. Adv. Building Technol. II(2002), 1273–1280. doi: 10.1016/B978-008044100-9/50158-3
  • [91] Günther E., Hiebler S., Mehling H., Redlich R.: Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Int. J. Thermophys. 30(2009), 4, 1257–1269. doi: 10.1007/s10765-009-0641-z
  • [92] Qureshi Z. A., Ali H.M., Khushnood S.: Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int. J. Heat Mass Tran. 127(2018), 838–856. doi: 10.1016/j.ijheatmasstransfer.2018.08.049
  • [93] Kumar R.R., Samykano M., Pandey A.K., Kadirgama K., Tyagi V.V.: Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges. Renew. Sust. Energ. Rev. 133(2020), 110341. doi: 10.1016/j.rser.2020.110341
  • [94] Sharma A., Tyagi V.V., Chen C.R., Buddhi D.: Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 13(2009),2, 318–345. doi: 10.1016/j.rser.2007.10.005
  • [95] Abhat A.: Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energ. 30(1983), 4, 313–332. doi: 10.1016/0038-092X(83)90186-X
  • [96] Sarbu I., Sebarchievici C.: A comprehensive review of thermal energy storage. Sustain. 10(2018), 1, 191. doi: 10.3390/su10010191
  • [97] Ma T., Li Z., Zhao J.: Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection. Renew. Sust. Energ. Rev. 116(2019), 109406. doi: 10.1016/j.rser.2019.109406
  • [98] Bahaidarah H.M., Baloch A.A., Gandhidasan P.: Uniform cooling of photovoltaic panels: A review. Renew. Sust. Energ. Rev. 57(2016), 1520–1544. doi:10.1016/j.rser.2015.12.064
  • [99] Hasan A., McCormack S.J., Huang M.J., Norton B.: Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 84(2010), 9, 1601–1612. doi: 10.1016/j.solener.2010.06.010
  • [100] Waqas A., Jie J., Xu L.: Thermal behavior of a PV panel integrated with PCM-filled metallic tubes: An experimental study. J. Renew. Sust. Energ. 9(2017), 5, 053504.doi: 10.1063/1.4995022
  • [101] Nada S.A., El-Nagar D.H.: Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules. Renew. Energ. 127(2018), 630–641. doi: 10.1016/j.renene.2018.05.010
  • [102] Kant K., Shukla A., Sharma A.: Ternary mixture of fatty acids as phase change materials for thermal energy storage applications. Energ. Rep. 2(2016), 274–279.doi: 10.1016/j.egyr.2016.10.002
  • [103] Kazemian A., Khatibi M., Ma T.: Performance prediction and optimization of a photovoltaic thermal system integrated with phase change material using response surface method. J. Clean. Prod. 290(2021), 125748. doi: 10.1016/j.jclepro.2020.125748
  • [104] Sharaf M., Yousef M.S., Huzayyin A.S.: Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environ. Sci. Pollut. R. 29(2022), 18, 26131–26159. doi: 10.1007/s11356-022-18719-9
  • [105] Stultz J.W., Wren L.C.: Thermal performance testing and analysis of photovoltaic modules in natural sunlight. Jet Propulsion Laboratory, Pasadena 1978.
  • [106] Günther E., Hiebler S., Mehling H., Redlich R.: Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Int. J. Thermophys. 30(2009), 4, 1257–1269. doi: 10.1007/s10765-009-0641-z
  • [107] https://www.rubitherm.eu/en/productcategory/organische-pcm-rt (accessed 15 Dec. 2022).
  • [108] Huang M.J., Eames P.C., Norton B.: The application of computational fluid dynamics to predict the performance of phase change materials for control of photovoltaic cell temperature in buildings. In: Proc. World Renewable Energy Cong. VI, Pergamon, Jan. 2000, 2123–2126. doi: 10.1016/B978-008043865-8/50454-2
  • [109] Huang M.J., Eames P.C., Norton B.: Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol. Energy 80(2006), 9, 1121–1130.doi: 10.1016/j.solener.2005.10.006
  • [110] Huang M.J., Eames P.C., Norton B., Hewitt N.J.: Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energ. Mat. Sol. C. 95(2011), 7, 1598–1603. doi: 10.1016/j.solmat. 2011.01.008
  • [111] Huang M.J.: The effect of using two PCMs on the thermal regulation performance of BIPV systems. Sol. Energ. Mat. Sol. C. 95(2011), 3, 957–963. doi:10.1016/j.solmat.2010.11.032
  • [112] Japs E., Sonnenrein G., Steube J., Vrabec J., Kenig E., Krauter S.: Technical investigation of a photovoltaic module with integrated improved phase change material. In: Proc. 28st Eur. Photovoltaic Solar Energy Conf. Exhib., Paris, Sep. 2013, 500–502.
  • [113] Hasan A., McCormack S.J., Huang M.J., Norton B.: Characterization of phase change materials for thermal control of photovoltaics using differential scanning calorimetry and temperature history method. Energ. Convers. Manage. 81(2014), 322–329. doi: 10.1016/j.enconman.2014.02.042
  • [114] Hasan A., McCormack S.J., Huang M.J., Sarwar J., Norton B.: Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Sol. Energy 115(2015), 264–276. doi:10.1016/j.solener.2015.02.003
  • [115] Indartono Y.S., Suwono A., Pratama F.Y.: Improving photovoltaics performance by using yellow petroleum jelly as phase change material. Int. J. Low-Carbon Technol. 11(2016), 3, 333–337. doi: 10.1093/ijlct/ctu033
  • [116] Hasan A., Alnoman H., Rashid Y.: Impact of integrated photovoltaic-phase change material system on building energy efficiency in hot climate. Energ. Buildings 130(2016), 495–505. doi: 10.1016/j.enbuild.2016.08.059
  • [117] Hachem F., Abdulhay B., Ramadan M., El Hage H., El Rab M.G., Khaled M.: Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance. Renew. Energ. 107(2017), 567-575. doi: 10.1016/j.renene.2017.02.032
  • [118] Lim J. H., Lee Y. S., Seong Y. B.: Diurnal thermal behavior of photovoltaic panel with phase change materials under different weather conditions. Energies 10(2017),12, 1983. doi: 10.3390/en10121983
  • [119] Karthick A., Murugavel K.K., Ramanan P.: Performance enhancement of a building-integrated photovoltaic module using phase change material. Energy 142(2018),803–812. doi: 10.1016/j.energy.2017.10.090
  • [120] Ezan M.A., Yüksel C., Alptekin E., YılancıA.: Importance of natural convection on numerical modelling of the building integrated PVP/PCM systems. Sol. Energy159(2018), 616–627. doi: 10.1016/j.solener.2017.11.022
  • [121] Zohra M.B., Riad A., Hassoune H., Alhamany, A., Mansouri M.: A new system for the production and storage of thermal energy based on two complementary and different types of phase changing materials. Case Stud. Therm. Eng. 26(2021),101072. doi: 10.1016/j.csite.2021.101072
  • [122] Nada S.A., El-Nagar D.H., Hussein H.M S.: Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energ. Convers. Manage. 166(2018), 735–743. doi: 10.1016/j.enconman.2018.04.035
  • [123] Jamil F., Ali H. M., Nasir M.A., Karahan M., Janjua M.M., Naseer A., Pasha R.A.: Evaluation of photovoltaic panels using different nano phase change material and a concise comparison: An experimental study. Renew. Energ. 169(2021), 1265–1279. doi: 10.1016/j.renene.2021.01.089
  • [124] Malvi C.S., Dixon-Hardy D.W., Crook R.: Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material. Sol. Energy 85(2011), 1440–1446. doi: 10.1016/j.solener.2011.03.027
  • [125] Yin H.M., Yang D.J., Kelly G., Garant J.: Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings. Sol. Energy 87(2013), 184–195. doi: 10.1016/j.solener.2012.10.022
  • [126] Browne M.C., Lawlor K., Kelly A., Norton B., Mc Cormack S.J.: Indoor characterisation of a photovoltaic/thermal phase change material system. Energy. Proced. 70(2015), 163–171. doi: 10.1016/j.egypro.2015.02.112
  • [127] Sardarabadi M., Passandideh-Fard M., Maghrebi M.J., Ghazikhani M.: Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Sol. Energy 161(2017), 62–69. doi:10.1016/j.solmat.2016.11.032
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e16112ce-d6da-45e3-95f5-6bda2fdfcdf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.