PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Case Study in Cianjur West Java, Indonesia: A Correlation Humic and Fulvic Acids with Mineralogical Composition and Physico-Chemical Analysis Using Partial Least Square

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Humic and fulvic acids are important materials for the health of the soil. This is related to the capability of humic and fulvic acids as chelating agent for pollutant in soil. The relationship between humic and fulvic acids with that of the soil properties is an important aspect to determine the characteristics of soil. Furthermore, production of humic and fulvic acids is a time-consuming process with several stages. Regarding this problem, the selection of sample size to study humic and fulvic acids is important. The relationship between the soil properties was analysed using the Partial Least Square (PLS) analysis, which is regarded as a solution to solve the analysis of complicated problems by offering a powerful approach. This study aimed to analyse the relationship between humic and fulvic acids, in terms of their mineral and physicochemical properties using the PLS method. The study was carried out in West Java, Indonesia. The results showed that the relationship between the chemical, physical, mineral contents with humic and fulvic acids, affected the negative and positive aspects of the relationship. Humic acids had a weak to good model category (0.269–0.940) with regards to the soil properties, and fulvic acids had a moderate model category (0.495–0.603) against all soil properties. Thus, the PLS method can solve a problem in study relationship between the soil properties with small sample and can help in understanding the soil characteristics in general.
Rocznik
Strony
191--204
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Soil Science and Land Resources Management, Faculty of Agriculture, Padjadjaran University, Jl. Raya Jatinangor-Sumedang Km. 21, 45363, Indonesia
autor
  • Department of Soil Science and Land Resources Management, Faculty of Agriculture, Padjadjaran University, Jl. Raya Jatinangor-Sumedang Km. 21, 45363, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Jatinangor-Sumedang Km. 21, 45363, Indonesia
Bibliografia
  • 1. Ahmed, O. H., Husni, M. H. A., Anuar, A. R., Hanafi, M. M., & Angela, E. D. S. (2004). A modified way of producing humic acid from composted pineapple leaves. Journal of Sustainable Agriculture, 25(1), 129–139. https://doi.org/10.1300/J064v25n01_10.
  • 2. Andersson, H., Bergström, L., Djodjic, F., Ulén, B., & Kirchmann, H. (2013). Topsoil and Subsoil Properties Influence Phosphorus Leaching from Four Agricultural Soils. Journal of Environmental Quality, 42(2), 455–463. https://doi.org/10.2134/jeq2012.0224.
  • 3. BBLSLP. (2006). Sifat Fisik Tanah dan Metode Analisisnya. Balai besar Litbang Sumberdaya Lahan Pertanian.
  • 4. Boguta, P., & Sokołowska, Z. (2014). Statistical relationship between selected physicochemical properties of peaty-muck soils and their fraction of humic acids. International Agrophysics, 28(3), 269–278. https://doi.org/10.2478/intag-2014–0017.
  • 5. BPPP. (2004). Tanah Sawah dan Teknologi Pengelolaannya. Pusat Penelitian dan Pengembangan Tanah dan Agroklimat. Badan Penelitian dan Pengembangan Pertanian.
  • 6. Bremner, J.M. (1965). Inorganic Forms of Nitrogen in Soil, (84), 1179–1237. https://doi.org/10.2134/agronmonogr22.c2.
  • 7. Christensen, B.T. (1992). Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates. Advances in Soil Sciences, 20, 1–90. https://doi.org/10.1007/978–1–4612–2930–8_1.
  • 8. Da Costa Saab, S., Carvalho, E. R., Filho, R. B., De Moura, M. R., Martin-Neto, L., & Mattoso, L. H. C. (2010). pH effect in aquatic fulvic acid from a Brazilian River. Journal of the Brazilian Chemical Society, 21(8), 1490–1496. https://doi.org/10.1590/s0103–50532010000800012.
  • 9. De Souza, F., & Bragança, S.R. (2018). Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders. Journal of Materials Research and Technology, 7(3), 254–260. https://doi.org/10.1016/j.jmrt.2017.08.008.
  • 10. Ghozali, Imam. 2011. Analisis Multivariate dengan Program SPSS. Semarang : Badan Penerbit Universitas Diponegoro.
  • 11. Haque, I., Lupwayi, N. Z., & Tadesse, T. (2000). Soil micronutrient contents and relation to other soil properties in Ethiopia. Communications in Soil Science and Plant Analysis, 31(17–18), 2751–2762. https://doi.org/10.1080/00103620009370624
  • 12. Huang, P. M. (1989). Feldspars, Olivines, Pyroxenes, and Amphiboles. In Minerals in Soil Environments (2nd Edition)-SSSA (pp. 1–76). https://doi.org/10.2136/sssabookser1.2ed.c20.
  • 13. Inubushi, K., Watanabe, I., & Inubushi, K. (1986). Dynamics of available nitrogen in paddy soils ii. mineralized n of chloroform-fumigated soil as a nutrient source for rice. Soil Science and Plant Nutrition, 32(4), 561–577. https://doi.org/10.1080/00 380768.1986.10557538.
  • 14. Klučáková, M., Pelikán, P., Lapčík, L., Lapčíkova, B., Kučerík, J., & Kaláb, M. (2000). Structure and properties of humic and fulvic acids. I. Properties and reactivity of humic acids and fulvic acids. Journal of Polymer Materials, 17(4), 337–356.
  • 15. Kome, G. K., Enang, R. K., Tabi, F. O., & Yerima, B. P. K. (2019). Influence of Clay Minerals on Some Soil Fertility Attributes: A Review. Open Journal of Soil Science, 09(09), 155–188. https://doi.org/10.4236/ojss.2019.99010
  • 16. Kovar, J. L., & Pierzynski, G. M. (2009). Methods of phosphorus analysis for soils, sediments, residuals, and waters. Southern Cooperative Series Bulletin. Southern Cooperative Series Bulletin. Retrieved from http://www.soil.ncsu.edu/sera17/publications/sera17–2/pm_cover.htm.
  • 17. Mikkelsen, R. L. (2005). Humic Materials for Agriculture. Better Crops, 89(3), 6–10. Retrieved from http://www.ipni.net/ppiweb/bcrops.nsf/$webindex/94E49BFA6C56CF4D85257049007442A0/$fi le/05–3p06.pdf.
  • 18. Mindari, W., Aini, N., & Kusuma, Z. (2014). Effects of humic acid-based buffer + cation on chemical characteristics of saline soils and maize growth. Journal of Degraded and Mining Lands Management, 2(1), 259–268. https://doi.org/10.15243/jdmlm.2014.021.259.
  • 19. Morales, L. A., Paz-Ferreiro, J., Vieira, S. R., & Vázquez, E. V. (2010). Spatial and temporal variability of Eh and pH over a rice field as related to lime addition. Bragantia, 69(suppl), 67–76. https://doi.org/10.1590/s0006–87052010000500008.
  • 20. Mulyani, O., Machfud, Y., Setiawan, A., & Joy, B. (2019). Potential of local organic matters in Jatinangor West Java Indonesia as raw materials for organic fertilizer. IOP Conference Series: Earth and Environmental Science, 393(1), 1–10. https://doi.org/10.1088/1755–1315/393/1/012048.
  • 21. Mulyani, O., Sudirja, R., Joy, B., & Hanandiva, R. A. (2019). The Effect of Organomineral on pH, Nitrogen Content, Organic-C Content and Yield of Upland Rice (Oryza sativa L.) on Inceptisols, West Java Indonesia. IOP Conference Series: Earth and Environmental Science, 334(1), 0–5. https://doi.org/10.1088/1755–1315/334/1/012071.
  • 22. Neely, H. L., Morgan, C. L. S., Hallmark, C. T., McInnes, K. J., & Molling, C. C. (2016). Apparent electrical conductivity response to spatially variable vertisol properties. Geoderma, 263, 168–175. https://doi.org/10.1016/j.geoderma.2015.08.040.
  • 23. Nortcliff, S., Hulpke, H., Bannick, C. G., Terytze, K., Knoop, G., Bredemeier, M., & SchulteBisping, H. (2012). Soil, 1. Definition, Function, and Utilization of Soil. Ullmann’s Encyclopedia of Industrial Chemistry, 33, 399–419. https://doi.org/10.1002/14356007.b07_613.pub3.
  • 24. Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (2002). Laboratory Methods of Soil and Plant Analysis: A Working Manual The Second Edition. SACRED Africa, Kenya Any (Vol. Second Edi).
  • 25. Purmalis, O., Klavins, M., Maris Klavins, C., & chem, hab. (2013). Comparative study of peat humic acids by using UV. 1st Annual International Interdisciplinary Conference, AHC, 24–26.
  • 26. Rice, T. J., Weed, S. B., & Buol, S. W. (1985). SoilSaprolite Profiles Derived from Mafic Rocks in the North Carolina Piedmont: II. Association of Free Iron Oxides with Soils and Clays. Soil Science Society of America Journal, 49(1), 173–178. https://doi.org/10.2136/sssaj1985.03615995004900010036x.
  • 27. Ristori, G. G., Sparvoli, E., de Nobili, M., & D’Acqui, L. P. (1992). Characterization of organic matter in particle-size fractions of Vertisols. Geoderma, 54(1–4), 295–305. https://doi.org/10.1016/0016–7061(92)90111-J.
  • 28. Saidi, D. (2012). Importance and role of cation exchange capacity on the physicals properties of the Cheliff saline soils (Algeria). Procedia Engineering, 33(2011), 435–449. https://doi.org/10.1016/j.proeng.2012.01.1223.
  • 29. Saputro, I. A., & Karmanto, K. (2020). Sintesis dan Karakterisasi Lempung Magnetik (Mg/Al-Fe Hydrotalcite) serta Aplikasinya Sebagai Adsorben Asam Fulvat. ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 3(2), 51–60. https://doi.org/10.19109/alkimia.v3i2.3804.
  • 30. Sharif, M., Khattak, R. A., & Sarir, M. S. (2002). Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Communications in Soil Science and Plant Analysis, 33(19–20), 3567–3580. https://doi.org/10.1081/CSS-120015906.
  • 31. Siddiqui, F. I., & Osman, S. B. A. B. S. (2013). Simple and multiple regression models for relationship between electrical resistivity and various soil properties for soil characterization. Environmental Earth Sciences, 70(1), 259–267. https://doi.org/10.1007/s12665–012–2122–0.
  • 32. Sootahar, M. K., Zeng, X., Su, S., Wang, Y., Bai, L., Zhang, Y.,Zhang, X. (2019). The effect of fulvic acids derived from different materials on changing properties of albic black soil in the Northeast Plain of China. Molecules, 24(8), 1–12. https://doi.org/10.3390/molecules24081535.
  • 33. Sootahar, M. K., Zeng, X., Wang, Y., Su, S., Soothar, P., Bai, L.,Ye, N. (2020). The short-term effects of mineral-and plant-derived fulvic acids on some selected soil properties: Improvement in the growth, yield, and mineral nutritional status of wheat (triticum aestivum L.) under soils of contrasting textures. Plants, 9(2), 1–16. https://doi.org/10.3390/plants9020205.
  • 34. Tserenpil, S., Dolmaa, G., & Voronkov, M. G. (2010). Organic matters in healing muds from Mongolia. Applied Clay Science, 49(1–2), 55–63. https://doi.org/10.1016/j.clay.2010.04.002.
  • 35. Verdoodt, A., Van Ranst, E., & Yerima, B. (2009). Use of Correlation Relationships to Enhance Understanding of Pedogenic Processes and Use Potential of Vertisols and Vertic Inceptisols of the Bale Mountain Area of Ethiopia. Tropicultura, 27(4), 223–232.
  • 36. Wiyono, G. 2011. Merancang Penelitian Bisnis dengan Alat Analisis SPSS 17.0 & Smart PLS 2.0. Yogyakarta: Percetakan STIM YKPM.
  • 37. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169–7439(01)00155–1.
  • 38. Xing, B., Liu, X., Liu, J., & Han, X. (2004). Physical and chemical characteristics of a typical Mollisol in China. Communications in Soil Science and Plant Analysis, 35(13–14), 1829–1838. https://doi.org/10.1081/LCSS-200026802.
  • 39. Ye, Z. H., Wong, J. W. C., Wong, M. H., Lan, C. Y., & Baker, A. J. M. (1999). Lime and pig manure as ameliorants for revegetating lead / zinc mine tailings : a greenhouse study. Bioresource Technology, 69, 35–43.
  • 40. Yeomans, J. C., & Bremner, J. M. (1989). Effects of organic solvents on denitrification in soil. Biology and Fertility of Soils, 7(4), 336–340. https://doi.org/10.1007/BF00257829.
  • 41. Yu, B., Xie, C., Cai, S., Chen, Y., Lv, Y., Mo, Z.,Yang, Z. (2018). Effects of tree root density on soil total porosity and non-capillary porosity using a ground-penetrating Tree Radar Unit in Shanghai, China. Sustainability (Switzerland), 10(12). https://doi.org/10.3390/su10124640.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e155a093-b6ff-4507-a0ff-c7db242e4c4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.