PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of solid particle contamination on the wear process in water lubricated marine strut bearings with NBR and PTFE bushes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports on a study of the influence of solid particle contamination on the wear process in water-lubricated slide bearings (steel-acrylonitrile-butadiene rubber (NBR) and steel- polytetrafluoroethylene (PTFE)). To compare the wear of the shaft journal and bushes (NBR and PTFE) when lubricated with fresh water and contaminated water, an experiment was carried out to identify key factors that influence the state of wear of slide bearing. The amount of wear was checked by means of geometric structure measurements on the journals, namely, roughness profile measurements using both a contact profilometer and an optical microscope. The obtained results enabled correlations between the material comprising the sliding sleeve, roughness of the journals and contamination inside the water-lubricated slide bearings.
Rocznik
Tom
Strony
167--178
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Author’s Archive, ‘Propeller shaft strut bearings’.
  • 2. W. Dai, B. Kheireddin, H. Gao, and H. Liang, ‘Roles of 88–98, 2016, doi: 10.1016/j.triboint.2016.05.020.
  • 3. Z. J. Zhang, D. Simionesie, and C. Schaschke, ‘Graphite and hybrid nanomaterials as lubricant additives’, Lubricants, vol. 2, no. 2, pp. 44–65, 2014, doi: 10.3390/lubricants2020044.
  • 4. A. Barszczewska, E. Piątkowska, and W. Litwin, ‘Selected Problems of Experimental Testing Marine Stern Tube Bearings’, Polish Marit. Res., vol. 26, no. 2, pp. 142–154, 2019, doi: 10.2478/pomr-2019-0034.
  • 5. A. Barszczewska, ‘Experimental Research on Insufficient Water Lubrication of Marine Stern Tube Journal Bearing with Elastic Polymer Bush’, Polish Marit. Res., vol. 27, no. 4, pp. 91–102, 2020, doi: 10.2478/pomr-2020-0069.
  • 6. N. Vulić, K. Bratić, B. Lalić, and L. Stazić, ‘Implementing Simulationx in the Modelling of Marine Shafting Steady State Torsional Vibrations’, Polish Marit. Res., vol. 28, no. 2, pp. 63–71, Jun. 2021, doi: 10.2478/pomr-2021-0022.
  • 7. M. Moschopoulos, G. N. Rossopoulos, and C. I. Papadopoulos, ‘Journal Bearing Performance Prediction Using Machine Learning and Octave-Band Signal Analysis of Sound and Vibration Measurements’, Polish Marit. Res., vol. 28, no. 3, pp. 137–149, 2021, doi: 10.2478/pomr-2021-0041.
  • 8. A. Ursolov, Y. Batrak, and W. Tarelko, ‘Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition’, Polish Marit. Res., vol. 26, no. 3, pp. 172–180, 2019, doi: 10.2478/pomr-2019-0058.
  • 9. H. Yang, J. Li, and X. Li, ‘Calculation of the Dynamic Characteristics of Ship’s Aft Stern Tube Bearing Considering Journal Deflection’, Polish Marit. Res., vol. 27, no. 1, pp. 107–115, 2020, doi: 10.2478/pomr-2020-0011.
  • 10. J. Duchowski, ‘Examination of journal bearing filtration requirements’, Lubr. Eng., vol. 09, pp. 1–9, 1998, https://www.researchgate.net/publication/287750536_Examination_of_journal_bearing_filtration_requirements.
  • 11. J. Duchowski, ‘Filtration requirements for journal bearings exposed to different contaminant levels’, Lubr. Eng., vol. 06, no. July, pp. 34–39, 2002, https://www.researchgate.net/publication/287750720_Filtration_requirements_for_journal_bearings_exposed_to_different_contaminant_levels.
  • 12. D. Hargreaves and S. C. Sharma, ‘Effects of solid contaminants on journal bearing performance’, Proc. 2nd World Tribol. Congr. 3-7 Sept. 2001, pp. 237–240, 2001, https://figshare.com/articles/conference_contribution/Effects_of_solid_contaminants_on_journal_bearing_performance/13463030/1.
  • 13. M. M. Khonsari and E. R. Booser, ‘Effect of contamination on the performance of hydrodynamic bearings’, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 220, no. 5, pp. 419–428, 2006, doi: 10.1243/13506501J00705.
  • 14. A. Dadouche and M. J. Conlon, ‘Operational performance textured journal bearings lubricated with a contaminated fluid’, Tribol. Int., vol. 93, pp. 377–389, 2016, 10.1016/j.triboint.2015.09.022.
  • 15. S. M. Park, G. H. Kim, and Y. Z. Lee, ‘Investigation of the wear behaviour of polyacetal bushings by the inflow of contaminants’, Wear, vol. 271, no. 9–10, pp. 2193–2197, 2011, https://doi.org/10.1016/j.wear.2010.12.033.
  • 16. L. Pena-Parás et al., ‘Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding’, Tribol. Int., vol. 119, no. August 2017, pp. 88–98, 2018, doi: 10.1016/j.triboint.2017.09.009.
  • 17. A. Akchurin, R. Bosman, P. M. Lugt, and M. van Drogen, ‘Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts’, Tribol. Lett., vol. 63, no. 2, pp. 1–14, 2016, https://doi.org/10.1007/s11249-016-0701-z.
  • 18. A. Akchurin, R. Bosman, and P. M. Lugt, ‘Generation of wear particles and running-in in mixed lubricated sliding contacts’, Tribol. Int., vol. 110, no. February, pp. 201–208, 2017, https://doi.org/10.1016/j.triboint.2017.02.019.
  • 19. A. Akchurin, R. Bosman, and P. M. Lugt, ‘A Stress-Criterion-Based Model for the Prediction of the Size of Wear Particles in Boundary Lubricated Contacts’, Tribol. Lett., vol. 64, no. 3, pp. 1–12, 2016, https://doi.org/10.1007/s11249-016-0772-x.
  • 20. G. Pintaude, ‘Characteristics of Abrasive Particles and Their Implications on Wear’, New Tribol. Ways, no. April 2011, 2012, https://www.researchgate.net/profile/Giuseppe-Pintaude/publication/221912389_Characteristics_of_Abrasive_Particles_and_Their_Implications_on_Wear/links/00b49525ef1357bd1d000000/Characteristics-of- Abrasive-Particles-and-Their-Implications-on-Wear.pdf.
  • 21. C. Q. Yuan, Z. Peng, X. C. Zhou, and X. P. Yan, ‘The characterization of wear transitions in sliding wear proces contaminated with silica and iron powder’, Tribol. Int., vol. 38, no. 2, pp. 129–143, 2005, 10.1016/j.triboint.2004.06.007.
  • 22. A. Ya and T. Yu, ‘Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data’, Proc. SPIE, vol. 9638, pp. 1–12, 2015, https://doi.org/10.1117/12.2193905.
  • 23. E. Szymczak and D. Burska, ‘Distribution of Suspended Sediment in the Gulf of Gdansk off the Vistula River mouth (Baltic Sea, Poland)’, IOP Conf. Ser. Earth Environ. Sci., vol. 221, no. 1, p. 012053, Mar. 2019, doi: 10.1088/1755-1315/221/1/012053.
  • 24. M. Damrat, A. Zaborska, and M. Zajaczkowski, ‘Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea)’, Oceanology, vol. 55, no. 4, pp. 937–950, 2013, doi:10.5697/oc.55-4.937.
  • 25. Geological Institute and Geology Institute, ‘Lithology and mineral composition of sediments from the bottom of the Gdańsk Basin’, vol. 313, no. 2, 1980, https://gq.pgi.gov.pl/article/viewFile/8797/pdf_830 (in Polish).
  • 26. T. Leipe and B. Sea, ‘The kaolinite/chlorite clay Baltic Sea as an indicator for long distance transport of fine-grained material’, Baltica, vol. 16, pp. 31–36, 2003, https://gamtostyrimai.lt/uploads/publications/docs/211_37972ec38c101346e9b8223cb576dc8b.pdf.
  • 27. Y. Solomonov, Experimental investigation of tribological characteristics of water-lubricated bearings materials on a pin-on- disc test rig, The University of Adelaide, School of Mechanical Engineering, Master of Philosophy Thesis, April 2014, https://digital.library.adelaide.edu.au/dspace/bitstream/2440/84676/8/02whole.pdf, https://hdl.handle.net/2440/84676.
  • 28. C. L. Dong, C. Q. Yuan, X. Q. Bai, Y. Yang, and X. P. Yan, ‘Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions’, Wear, vol. 332–333, pp. 1012–1020, 2015, 10.1016/j.wear.2015.01.009.
  • 29. C. Yuan, Z. Guo, W. Tao, C. Dong, and X. Bai, ‘Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys’, Wear, vol. 384–385, pp. 185–191, Aug. 2017, doi: 10.1016/j.wear.2017.02.019.
  • 30. T. Chang, Z. Guo, and C. Yuan, ‘Study on influence of Koch snowflake surface texture on tribological performance for marine water-lubricated bearings’, Tribol. Int., vol. 129, pp. 29–37, 2019, doi: 10.1016/j.triboint.2018.08.015.
  • 31. Z. Wu, C. Sheng, Z. Guo, F. Li, ‘Equivalent Calculate of the Equivalent Radius and the Tribological Performance of the Marine Water-Lubricated Bearing’, Mocaxue Xuebao/Tribology, vol. 37, no. 5, pp. 656–662, 2017, doi: 10.16078/j.tribology.2017.05.013.
  • 32. Z. Jia, Z. Guo, C. Yuan, ‘Effect of Material Hardness on Water Lubrication Performance of Thermoplastic Polyurethane under Sediment Environment’, J. Mater. Eng. Perform., vol. 30, no. 10, pp. 7532–7541, 2021, doi: 10.1007/s11665-021-05912-z.
  • 33. X. Liang, Z. Guo, J. Tian, C. Yuan, ‘Development of modified polyacrylonitrile fibers for improving tribological performance characteristics of thermoplastic polyurethane material in water-lubricated sliding bearings’, Polym. Adv. Technol., vol. 31, no. 12, pp. 3258–3271, 2020, doi: 10.1002/pat.5050.
  • 34. Z. Cui, Z. Guo, X. Xie, C. Yuan, ‘The Synergistic Effect Mechanism of PA66 Self-Lubrication Property and Surface Texture on Tribological Performance of HDPE Water-Lubricated Bearing’, Mocaxue Xuebao/Tribology, vol. 39, no. 4, pp. 407–417, 2019, doi: 10.16078/j.tribology.2018171.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e151cbed-cf8d-4546-b6a7-e2d7931c018e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.