PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Catalytic activity of cobalt and cerium catalysts supported on calcium hydroxyapatite in ethanol steam reforming

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, Co,Ce/Ca10(PO4)6(OH)2 catalysts with various cobalt loadings for steam reforming of ethanol (SRE) were prepared by microwave-assisted hydrothermal and sol-gel methods, and characterized by XRD, TEM, TPR-H2, N2 adsorption-desorption measurements and cyclohexanol (CHOL) decomposition tests. High ethanol conversion (close to 100%) was obtained for the catalysts prepared by both methods but these ones prepared under hydrothermal conditions (HAp-H) ensured higher hydrogen yield (3.49 mol H2/mol C2H5OH) as well as higher amount of hydrogen formed (up to 70%) under reaction conditions. The superior performance of 5Co,10Ce/HAp-H catalyst is thought to be due to a combination of factors, including increased reducibility and oxygen mobility, higher density of basic sites on its surface, and improved textural properties. The results also show a significant effect of cobalt loading on catalysts efficiency in hydrogen production: the higher H2 yield exhibit catalysts with lower cobalt content, regardless of the used synthesis method.
Rocznik
Strony
59--67
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Low Temperature and Structure Research, Department of Nanomaterials Chemistry and Catalysis, PO Box 1410, 50-950 Wroclaw, Poland
autor
  • Wroclaw University of Technology, Division of Chemistry and Technology Fuels, Gdanska 7/9, 50-344 Wrocław, Poland
autor
  • Polish Academy of Sciences, Institute of Low Temperature and Structure Research, Department of Nanomaterials Chemistry and Catalysis, PO Box 1410, 50-950 Wroclaw, Poland
Bibliografia
  • 1. Mathure, P.V., Ganguly, S., Patwardhan, A.V. & Saha, R.K. (2007). Steam reforming of ethanol using a commercial nickel-based catalyst. Ind. Eng. Chem. Res. 46, 8471-8479. DOI: 10.1021/ie070321k.
  • 2. Soyal-Baltacioglu, F., Aksoylu, A.E. & Önsan, Z.I. (2008). Steam reforming of ethanol over Pt-Ni Catalysts. Catal. Today 138, 183-186. DOI: 10.1016/j.cattod.2008.05.035.
  • 3. Basagiannis, A.C., Panagiotopoulou P. & Verykios X.E. (2008). Low temperature steam reforming of ethanol over supported noble metal catalysts. Top. Catal. 51, 2-12. DOI: 10.1016/j.cattod.2008.05.035.
  • 4. Erdőhelyi, A., Raskó, J., Kecskés, T., Tóth, M., Dömök, M. & Baán, K. (2006). Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal. Today 116, 367-376. DOI: 10.1016/j.cattod.2006.05.073.
  • 5. Furtado, A.C., Alonso, Ch.G., Cantão, M.P. & Fernandes- Machado, N.R.C. (2009). Bimetallic catalysts performance during ethanol steam reforming: influence of support materials. Int. J. Hydrogen Energy 34, 7189-7196. DOI: 10.1016/j. ijhydene.2009.06.060.
  • 6. Lovón, A.S.P., Lovón-Quintana, J.J., Almerindo, G.I., Valenca, G.P., Bernardi, M.I.B., Araújo, V.D., Rodrigues, T.S., Robles-Dutenhefner, P.A. & Fajardo, H.V. (2012). Preparation, structural characterization and catalytic properties of Co/CeO2 catalysts for the steam reforming of ethanol and hydrogen production. J. Pow. Sour. 216, 281-289. DOI: 10.1016/j.jpowsour.2012.05.066.
  • 7. He, L., Berntsen, H. & Chen, D. (2010). Approaching sustainable H2 production: sorption enhanced steam reforming of ethanol. J. Phys. Chem. A 114, 3834-3844. DOI: 10.1021/ jp906146y.
  • 8. Haryanto, A., Fernando, S., Murali, N. & Adhikari, S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energ. Fuel 19, 2098-2106. DOI: 10.1021/ef0500538.
  • 9. Wang, H., Ye, J.L., Liu, Y., Li, Y.D. & Qin, Y.N. (2007). Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods. Catal. Today 129, 305-312. DOI: 10.1016/j.cattod.2006.10.012.
  • 10. Liberatori, J.W.C., Ribeiro, R.U., Zanchet, D., Noronha, F.B. & Bueno, J.M.C. (2007). Steam reforming of ethanol on supported nickel catalysts. Appl. Catal. A 327, 197-204. DOI: 10.1016/j.apcata.2007.05.010.
  • 11. Nishiguchi, T., Matsumoto, T., Kanai, H., Utani, K., Matsumura, Y., Shen, W.J. & Imamura, S. (2005). Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl. Catal. A 279, 273-277. DOI: 10.1016/j.apcata.2004.10.035.
  • 12. Soykal, I.I., Sohn, H. & Ozkan, U.S. (2012). Effect of support particle size in steam reforming of ethanol over Co/ CeO2 catalysts. ASC Catal. 2, 2335-2348.
  • 13. Llorca, J., Homs, N., Sales, J. & Ramírez de la Piscina, P. (2002). Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J. Catal. 209, 306-317. DOI: 10.1006/jcat.2002.3643.
  • 14. Bayram, B., Soykal, I.I., von Deak, D., Miller, J.T. & Ozkan, U.S. (2011). Ethanol steam reforming over Co-based catalysts: investigation of cobalt coordination environment under reaction conditions. J. Catal. 284, 77-89. DOI: 10.1016/j. jcat.2011.09.001. !
  • 15. Song, H., Zhang, L. & Ozkan, U.S. (2010). Investigation of the reaction network in ethanol steam reforming over supported cobalt catalysts. Ind. Eng. Chem. Res. 49, 8984-8989. DOI: 10.1021/ie100006z.
  • 16. Song, H., Zhang, L. & Ozkan, U.S. (2012) The effect of surface acidic and basic properties on the performance of cobalt-based catalysts for ethanol steam reforming. Top. Catal. 55, 1324-1331. DOI: 10.1007/s11244-01209918-8.
  • 17. Park, J.H., Lee, D.W., Im, S.W., Lee, Y.H., Suh, D.J. & Jun, K.W. (2012). Oxidative coupling of methane using nonstoichiometric lead hydroxyapatite catalyst mixtures. Fuel 94, 433-439. DOI: 10.1016/j.fuel.2011.08.056.
  • 18. Hakim, L., Yaakob, Z., Ismail, M., Daud, W.R.W. & Sari, R. (2013). Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts. Chem. Pap. 67, 703-712. DOI: 10.2478/s11696-013-0368-y
  • 19. Yasukawa, A., Gotoh, K., Tanaka, H. & Kondori, K. (2012). Preparation and structure of calcium hydroxyapatite substituted with light rare earth ions. Coll. Surf. A. 393, 53-59. DOI: 10.1016/j.colsurfa2011.10.024.
  • 20. Sugiyama, S., Shono, T., Makino, D., Moriga, T., Hayashi, H. (2003). Enhancement of the catalytic activities in propane oxidation and H-D exchangeability of hydroxyl groups by the incorporation with cobalt into strontium hydroxyapatite. J. Catal. 214, 8-14. DOI: 10.1016/S0021-9517(02)00101-X.
  • 21. Aellach, B., Ezzamarty, A., Leglise, J., Lamonier, C. & Lamonier J.F. (2010). Calcium-deficient and stoichiometric hydroxyapatites promoted by cobalt for the catalytic removal of oxygenated volatile organic compounds. Cat. Lett. 135, 197-206. DOI: 10.1007/s10562-010-0282-7.
  • 22. Yaakob, Z., Hakim, L., Kumar, M.N.S., Ismail, M., Dau, W.R.W. (2010). Hydroxyapatite supported nickel catalyst for hydrogen production. Am. J. Sci. Ind. Res. 1(2) 122-126. DOI: 10.5251/ajsir2010.1.2.122.126.
  • 23. Ogo, S., Onda, A. & Yanagisawa, K. (2008). Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl. Catal. A 348, 129-134. DOI: 10.1016/j.apcata.2008.06.035.
  • 24. Jaworski, J.W., Cho, S., Kim, Y., Jung, J.H., Jeon, H. S., Min, B.K. & Kwon, K. (2013). Hydroxyapatite supported cobalt catalysts for hydrogen generation. J. Coll. Interf. Sci. 394, 401-408. DOI: 10.1016/j.jcis.2012.11.036.
  • 25. Fathi, M.H. & Hanifi, A. (2009). Sol-gel derived nanostructure hydroxyapatite powder and coating: aging time optimisation. Adv. Appl. Ceram. 6, 363-368. DOI: 10.1179/174367609X414080.
  • 26. Martin, D. & Duprez, D. (1997). Evaluation of the acid-base surface properties of several oxides and supported metal catalysts by means of model reactions. J. Mol. Catal. A-Chem. 118, 113-128. DOI: 10.1016/S1381-1169(96)00371-8.
  • 27. Konsolakis, M., Sgourakis, M. & Carabineiro, S.A.C. (2015). Surface and redox properties of cobalt-ceria binary oxides: on the effect of Co content and pretreatment conditions. Appl. Surf. Sci. 341, 48-54. DOI: 10.1016/j.apsusc.2015.02.188.
  • 28. Liotta, L.F., Di Carlo, G., Pantaleo, G. & Deganello, G. (2005). Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite catalysts for methane combustion: correlation between morphology reduction and catalytic activity. Catal. Commun. 6, 329-336. DOI: 10.1016/j.catcom.2005.02.006.
  • 29. Liotta, L.F., Ousmane, M., Di Carlo, G., Pantaleo, G., Deganello, G., Boreave, A. & Giroir-Fendler A. (2009). Catalytic removal of toluene over Co3O4-CeO2 mixed oxide catalysts: comparison with Pt/Al2O3. Cat. Lett. 127, 270-276. DOI: 10.1007/s10562-008-9640-0.
  • 30. Zanchet, D., Santos, J.B.O., Damyanova, S., Gallo, J. M.R. & Buena, J.M.C. (2015). Toward understanding metal-catalyzed ethanol reforming. ASC Catal. 5, 3841-3863. DOI: 10.1021/cs5020755.
  • 31. Batista, M.S., Santos, R.K.S., Assaf, E.M., Assaf, J.M. & Ticianelli, E.A. (2004). High efficiency steam reforming of ethanol by cobalt-based catalysts. J. Pow. Sour. 134, 27-32. DOI: 10.1016/j.jpowsour.2004.01.052.
  • 32. Llorca, J., Dalmon, J.A., de la Piscina, P.R. & Homs, N. (2003). In situ magnetic characterization of supported cobalt catalysts under steam-reforming of ethanol. Appl. Catal. A 243, 261-269. DOI: 10.1016/S0926-860X(02)00546-X.
  • 33. Llorca, J., de la Piscina, P.R., Dalmon, J.A. & Homs, N. (2004). Transformation of Co3O4 during ethanol steam-reforming. Activation process for hydrogen production. Chem. Mater. 16, 3573-3578. DOI: 10.1021/cm049311p.
  • 34. Batista, M.S., Santos, R.K.S., Assaf, E.M., Assaf, J.M. & Ticianelli, E.A. (2003). Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. J. Pow. Sour. 124, 99-103. DOI: 10.1016/S0378-7753(03)00599-8.
  • 35. de la Peña O’Shea, V.A., Homs, N., Pereira, E.B., Nafria, R. & de la Piscina, P.R. (2007). X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catal. Today 126, 148-152. DOI: 10.1016/j.cattod.2006.10.002.
  • 36. Karim, A.M., Su, Y., Engelhard, M.H., King, D.L. & Wang, Y. (2011). Catalytic Roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts. ACS Catal. 1, 279-286. DOI: 10.1021/cs200014j.
  • 37. Lebarbier, V.M., Karim, A.M., Engelhard, M.H., Wu, Y., Xu, B.Q., Petersen, E.J., Datye, A.K. & Wang, Y. (2011). The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts. ChemSusChem 4, 1679-1684. DOI: 10.1002cssc.201100240.
  • 38. Galetti, A.E., Gomez, M.F., Arrúa, L.A. & Abello, M.C. (2008). Hydrogen production by ethanol reforming over NiZnAl catalysts. Influence of Ce addition on carbon deposition. Appl. Catal. A 348, 94-102. DOI: 10.1016/j.apcata.2008.06.039.
  • 39. Song, H. & Ozkan, U.S. (2009). Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J. Catal. 261, 66-74. DOI: 10.1016/j.jcat.2008.11.006.
  • 40. Xu, W., Liu, Z., Johnston-Peck, A.C., Senanayake, S.D., Zhou, G., Stacchiola, D., Stach, E.A. & Rodriguez, J.A. (2013). Steam reforming of ethanol on Ni/CeO2: reaction pathway and interaction between Ni and the CeO2 support. ACS Catal. 3, 975-984. DOI: 10.1021/cs4000969.
  • 41. Machocki, A., Denis, A., Grzegorczyk, W. & Gac, W. (2010). Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for steam reforming of bio-ethanol. Appl. Surf. Sci. 256, 5551-5558. DOI: 10.1016/j.apsusc.2009.12.137.
  • 42. Kumar A., Prasad R. & Sharma Y.C. (2014). Steam reforming of ethanol: production of renewable hydrogen. Int. J. Environ. Res. 3, 203-212. From Research India Publication: http://www.ripublication.com/ijerd.htm
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e150a882-740f-4c94-8027-2937329d089a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.