PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A film stress measurement system applicable for hyperbaric environment and its application in coal and gas outburst simulation test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A film stress measurement system applicable for hyperbaric environment was developed to characterize stress evolution in a physical simulation test of a gas-solid coupling geological disaster. It consists of flexible film pressure sensors, a signal conversion module, and a highly-integrated acquisition box which can perform synchronous and rapid acquisition of 1 kHz test data. Meanwhile, we adopted a feasible sealing technology and protection method to improve the survival rate of the sensors and the success rate of the test, which can ensure the accuracy of the test results. The stress measurement system performed well in a large-scale simulation test of coal and gas outburst that reproduced the outburst in the laboratory. The stress evolution of surrounding rock in front of the heading is completely recorded in a successful simulation of the outburst which is consistent with the previous empirical and theoretical analysis. The experiment verifies the feasibility of the stress measurement system as well as the sealing technology, laying a foundation for the physical simulation test of gas-solid coupled geological disasters.
Rocznik
Strony
73--88
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Shandong University, Geotechnical and Structural Engineering Research Centre, Jinan 250061, Shandong, China
  • Shandong University, School of Qilu Transportation, Jinan 250061, Shandong, China
  • Shandong University, Geotechnical and Structural Engineering Research Centre, Jinan 250061, Shandong, China
  • Shandong University, School of Qilu Transportation, Jinan 250061, Shandong, China
autor
  • Anhui University of Science and Technology, Huainan 232001, Anhui, China
autor
  • Shandong University, Geotechnical and Structural Engineering Research Centre, Jinan 250061, Shandong, China
  • Shandong University, School of Qilu Transportation, Jinan 250061, Shandong, China
autor
  • Shandong University, Geotechnical and Structural Engineering Research Centre, Jinan 250061, Shandong, China
  • Shandong University, School of Qilu Transportation, Jinan 250061, Shandong, China
autor
  • Shandong University, Geotechnical and Structural Engineering Research Centre, Jinan 250061, Shandong, China
  • Shandong University, School of Qilu Transportation, Jinan 250061, Shandong, China
Bibliografia
  • [1] Wang, C., Yang, S., Li, X., Li, J., & Jiang, C. (2019). Comparison of the initial gas desorption and gas-release energy characteristics from tectonically-deformed and primary-undeformed coal. Fuel, 238, 66-74. https://doi.org/10.1016/j.fuel.2018.10.047
  • [2] Li, S. C., Gao, C. L., Zhou, Z. Q., Li, L. P., Wang, M. X., Yuan, Y. C., & Wang, J. (2019). Analysis on the Precursor Information of Water Inrush in Karst Tunnels: A True Triaxial Model Test Study. Rock Mechanics and Rock Engineering, 52(2), 373-384. https://doi.org/10.1007/s00603-018-1582-2
  • [3] Hu, Q., Zhang, S., Wen, G., Dai, L., & Wang, B. (2015). Coal-like material for coal and gas out-burst simulation tests. International Journal of Rock Mechanics and Mining Sciences, 74, 151-156. https://doi.org/10.1016/j.ijrmms.2015.01.005
  • [4] Yekrangi, A., Yaghobi, M., Riazian, M., & Koochi, A. (2019). Scale-Dependent Dynamic Behavior of Nanowire-Based Sensor in Accelerating Field. Journal of Applied and Computational Mechanics, 5(2), 486-497. https://dx.doi.org/10.22055/jacm.2018.27302.1393
  • [5] Wang, C. J., Yang, S. Q., Li, X. W., Yang, D. D., & Jiang, C. L. (2018). The correlation between dynamic phenomena of boreholes for outburst prediction and outburst risks during coal roadways driving. Fuel, 231, 307-316. https://doi.org/10.1016/j.fuel.2018.05.109
  • [6] Li, S. G., Zhao, P. X., Lin, H. F., Xiao, P., & Wei, Z. Y. (2015). Study on character of physical simulation similar material of coal-rock and gas solid-gas coupling. Journal of China Coal Society, 40(01), 80-86, (in Chinese). https://doi.org/10.13225/j.cnki.jccs.2014.003
  • [7] Li, S. G., Lin, H. F., Zhao, P. X., Xiao, P., & Pan, H. Y. (2014). Dynamic evolution of mining fissure elliptic paraboloid zone and extraction coal and gas. Journal of China Coal Society, 39(08), 1455-1462, (in Chinese). https://doi.org/10.13225/j.cnki.jccs.2014.9013
  • [8] Zhang, J. X., Sun, Q., Zhou, N., Haiqiang, J., Germain, D., & Abro, S. (2016). Research and application of roadway backfill coal mining technology in western coal mining area. Arabian Journal of Geosciences, 9(10), 558. https://doi.org/10.1007/s12517-016-2585-5
  • [9] Tykhan, M., Ivakhiv, O., & Teslyuk, V. (2017). New type of Piezoresistive Pressure Sensors for Environments with Rapidly Changing Temperature. Metrology and Measurement Systems, 24(1), 185-192. https://doi.org/10.1515/mms-2017-0010
  • [10] Bouřa, A., Kulha, P., & Husák, M. (2016). Wirelessly Powered High-Temperature Strain Measuring Probe Based on Piezoresistive Nanocrystalline Diamond Layers. Metrology and Measurement Systems, 23(3), 437-449. https://doi.org/10.1515/mms-2016-0036
  • [11] Xu, M. G., Reekie, L., Chow, Y. T., & Dakin, J. P. (1993). Optical in-fibre grating high pressure sensor. Electronics Letters, 29(4), 398. http://doi.org/10.1049/el:19930267
  • [12] Yang, X. F., Dong, X. Y., Zhao, C. L., Ng, J. H., Peng, Q. Z., Zhou, X. Q., & Chao, L. (2005). A temperature-independent displacement sensor based on a fiber Bragg grating. Proceedings of SPIE -the International Society for Optical Engineering, 5855, 691-694. https://doi.org/10.1117/12.623406
  • [13] Zhao, Y., Yu, C. B., & Liao, Y. B. (2004). Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement. Optics & Laser Technology, 36(1), 39-42. https://doi.org/10.1016/S0030-3992(03)00129-4
  • [14] Zrelli, A. (2019). Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems. IET Communications, 13(18), 3012-3019. https://doi.org/10.1049/iet-com.2018.5260
  • [15] Lv, H. F., Zhao, X. F., Zhan, Y. L., & Gong, P. (2017). Damage evaluation of concrete based on Brillouin corrosion expansion sensor. Construction & Building Materials, 143, 387-394. https://doi.org/10.1016/j.conbuildmat.2017.03.122
  • [16] Zrelli, A., & Ezzedine, T. (2018). Design of optical and wireless sensors for underground mining monitoring system. Optik - International Journal for Light and Electron Optics, 170, 376-383. https://doi.org/10.1016/j.ijleo.2018.04.021
  • [17] Sabokrouh, M., & Farahani, M. (2019). Experimental study of the residual stresses in girth weld of natural gas transmission pipeline. Journal of Applied and Computational Mechanics, 5(2), 199-206. https://dx.doi.org/10.22055/jacm.2018.25756.1294
  • [18] Chang, C., Johnson, G., Vohra, S. T., & Althouse, B. (2020). Development of fiber Bragg-grating-based soil pressure transducer for measuring pavement response. SPIE, 2000:3986, 480-488. https://doi.org/10.1117/12.388139
  • [19] Wang, W. H., Zhou, X. L., Wu, W. N., Chen, J. H., He, S. L., Guo, W. F., Gao, J. B., Huang, S. X., & Chen, X. H. (2019). Monolithic Structure-Optical Fiber Sensor with Temperature Compensation for Pressure Measurement. Materials, 12(4), 552. https://doi.org/10.3390/ma12040552
  • [20] Correia, R., Jin, L., Staines, S., Chehura, E., & Tatam, R. P. (2009). Fibre Bragg grating based effective soil pressure sensor for geotechnical applications. Proceedings of SPIE - the International Society for Optical Engineering, 7503, 75030F-75030F-4. https://doi.org/10.1117/12.835751
  • [21] Hu, Z. X., Wang, Z. W., Ma, Y. B., & Zhang, J. (2010). Soil pressure sensor based on temperature compensation FBG. Journal of Applied Optics, 31(01), 110-113. (in Chinese)
  • [22] Li, F., Du, Y. L., Zhang, W. T., & Li, F. (2013). Fiber Bragg grating soil-pressure sensor based on dual L-shaped levers. Optical Engineering, 52(1), 4403. https://doi.org/10.1117/1.OE.52.1.014403
  • [23] Hong, C. Y., Zhang, Y. I., Yang, Y. Y., & Yuan, Y. (2019). A FBG based displacement transducer for small soil deformation measurement. Sensors & Actuators A Physical, 286, 35-42. https://doi.org/10.1016/j.sna.2018.12.022
  • [24] Xu, H. B., Zheng, X. Y., Zhao, W. G., Sun, X., Li, F., Du, Y. L., Liu, B., & Gao, Y. (2019). High Precision, Small Size and Flexible FBG Strain Sensor for Slope Model Monitoring. Sensors, 19(12), 2716. https://doi.org/10.3390/s19122716
  • [25] Piao, C. D., Wang, D., Kang, H., He, H., Zhao, C. Q., & Liu, W. Y. (2019). Model test study on overburden settlement law in coal seam backfill mining based on fiber Bragg grating technology. Arabian Journal of Geosciences, 12(13), 1-9. https://doi.org/10.1007/s12517-019-4564-0
  • [26] Cao, J., Sun, H. T., Wang, B., Dai, L. C., Zhao, B., Wen, G. C., & Zhao, X. S. (2019). A novel large-scale three-dimensional apparatus to study mechanisms of coal and gas outburst. International Journal of Rock Mechanics & Mining Sciences, 118, 52-62. https://doi.org/10.1016/j.ijrmms.2019.04.002
  • [27] Nie, B. S., Li, X. C. (2012). Mechanism research on coal and gas outburst during vibration blasting. Safety Science, 50(4), 741-744. https://doi.org/10.1016/j.ssci.2011.08.041
  • [28] Li, H., Feng, Z. C., Zhao, D., Dong, D. (2017). Simulation experiment and acoustic emission study on coal and gas outburst. Rock Mechanics and Rock Engineering, 50(8), 2193-2205. https://doi.org/10.1007/s00603-017-1221-3
  • [29] Zhang, Q. H., Yuan, L., Wang, H. P., Kang, J. H., Li, S. C., Xue, J. H., Zhou, W., & Zhang, D. M. (2016). Establishment and analysis of similarity criteria for physical simulation of coal and gas outburst. Journal of China Coal Society, 41(11), 2773-2779, (in Chinese). https://doi.org/10.13225/j.cnki.jccs.2016.0571
  • [30] Hu, Q. T., Wen, G. C. (2013). Mechanics mechanism of coal and gas outburst. Science Press: Beijing.
  • [31] Wei, Y., Lin, B. Q., Cheng, Z., Li, X. Z., An, S. (2012). How in situ stresses and the driving cycle footage affect the gas outburst risk of driving coal mine roadway. Tunneling and Underground Space Technology Incorporating Trenchless Technology Research, 31, 139-148. https://doi.org/10.1016/j.tust.2012.04.015
  • [32] Li, S. G. (2000). Movement of the surrounding rock and gas delivery in fully-mechanized top coal caving. China University of Mining and Technology Press.
Uwagi
1. This research was funded by the National Natural Science Foundation of China (51427804), Natural Science Foundation of the Shandong Province (ZR2017MEE023,2019GSF111036).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e14fbdc3-f933-41c0-9e95-56f4a2f26bf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.