PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An observer for magnetic levitation system control based on a coefficient diagram method and backstepping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose a robust nonlinear control design concept based on a coefficient diagram method and backstepping control, combined with a nonlinear observer for the magnetic levitation system to achieve precise position control in the existence of external disturbance, parameters mismatch with considerable variations and sensor noise in the case, where the full system states are supposed to be unavailable. The observer converges exponentially and leads to good estimate as well as a good track of the steel ball position with the reference trajectory. A simulation results are provided to show the excellent performance of the designed controller.
Rocznik
Strony
403--–417
Opis fizyczny
Bibliogr. 19 poz., rys., wz.
Twórcy
autor
  • Department of Electrical Engineering, Process Control Laboratory, ENP 10. avenue Hassan Badi P.O Box 182 Algiers, Algeria, 16200
autor
  • Electrical Engineering and Computing Faculty USTHB P.O Box 32 El Alia, Bab Ezzouar Algiers, 16111 Algeria
autor
  • Department of Electrical Engineering, Process Control Laboratory, ENP 10. avenue Hassan Badi P.O Box 182 Algiers, Algeria, 16200
  • Department of Electrical Engineering, Process Control Laboratory, ENP 10. avenue Hassan Badi P.O Box 182 Algiers, Algeria, 16200
Bibliografia
  • [1] Vinodh K.E., Jerome J., Algebraic Riccati equation based Q and R matrices selection algorithm for optimal LQR applied to tracking control of 3rd order magnetic levitation system, Archive of Electrical Engineering, vol. 65, no. 1, pp. 151–168 (2016).
  • [2] Yang Z.J., Miyazaki K., Kanae S., Wada K., Robust position control of a magnetic levitation system via dynamic surface control technique, IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 26–34 (2004).
  • [3] Yang Z.J., Fukushima Y., Kanae S., Wada K., Robust non-linear output-feedback control of a magnetic levitation system by K-filter approach, IET Control Theory and Applications, vol. 3, no. 7, pp. 852–864 (2009).
  • [4] Teodorescu C.S., Sakamoto N., Olaru S., Controller design for sine wave tracking on magnetic levitation system: a comparative simulation study, IEEE International Conference on Control Applications, Yokohama, Japan, pp. 2231–2236 (2010).
  • [5] Hamamci S.E., A robust polynomial based control for stable processes with time delay, Electrical Engineering, vol. 87, pp. 163–172 (2005).
  • [6] Ali R., Mohamed T.H., Qudaih Y.S., Mitani Y., A new load frequency control approach in an isolated small power systems using coefficient diagram method, Electrical Power and Energy Systems, vol. 56, pp. 110–116 (2014).
  • [7] Mohamed T.H., Shabib G., Ali H., Distributed load frequency control in an interconnected power system using ecological technique and coefficient diagram method, Electrical Power and Energy Systems, vol. 82, pp. 496–507 (2016).
  • [8] Bhusnur S., Effect of stability indices on robustness and system response in coefficient diagram method, International Journal of Research in Engineering and Technology, vol. 4, no. 10, pp. 282–287 (2015).
  • [9] Bernard M.Z., Mohamed T.H., Qudaih Y.S., Mitani Y., Decentralized load frequency control in an interconnected power system using coefficient diagram method, Electrical Power and Energy Systems, vol. 63, pp. 165–172 (2014).
  • [10] Chang Y., Cheng C.C., Block backstepping control of multi-input nonlinear systems with mismatched perturbations for asymptotic stability, International Journal of Control, vol. 83, no. 10, pp. 2028–2039 (2010).
  • [11] Ma R., Zhao S., Wang M., Global robust stabilisation of a class of uncertain switched nonlinear systems with dwell time specifications, International Journal of Control, vol. 87, no. 3, pp. 589–599 (2014).
  • [12] Ghommam J., Saad M., Backstepping based cooperative and adaptive tracking control design for a group of underactuated AUVs in horizontal plan, International Journal of Control, vol. 87, no. 5, pp. 1076–1093 (2014).
  • [13] Hong Y., Zheng-jin F., Xu-yong W., Nonlinear control for a class of hydraulic servo system, Journal of Zhejiang University Science, vol. 5, no. 11, 1413–1417 (2004).
  • [14] Morawiec M., Dynamic variables limitation for backstepping control of induction machine and voltage source converter, Archive of Electrical Engineering, vol. 61, no. 3, pp. 389–410 (2012).
  • [15] Ker C.C., Lin C.E., Wang R.T., Tracking and balance control of ball and plate system, Journal of the Chinese Institute of Engineers, vol. 30, no. 3, pp. 459–470 (2007).
  • [16] Pettersen K.Y., Nijmeijer H., Underactuated ship tracking control: Theory and experiments, International Journal of Control, vol. 74, no. 14, pp. 1435–1446 (2001).
  • [17] Yu Y., Zhong Y.S., Robust backstepping output tracking control for siso uncertain nonlinear systems with unknown virtual control coefficients, International Journal of Control, vol. 83, no. 6, pp. 1182–1192 (2010).
  • [18] Won D., Kim W., Disturbance observer based backstepping for position control of electrohydraulic systems, International Journal of Control Automation and Systems, vol. 13, pp. 488–493 (2015).
  • [19] Pagilla P.R., Zhu Y., Controller and observer design for lipschitz nonlinear systems, Proceeding of the American Control Conference, Boston, United State of America, pp. 2379–2384 (2004).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e14c8d15-5008-41d9-bb1d-ab6da546e301
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.