PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical simulation of the particle settling in a Bingham fluid using the two-way coupling CFD-DEM scheme

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The computational fluid dynamics coupled with the discrete element method is widely employed to simulate particle-fluid interactions in solid-liquid flows. The restrictions imposed by the CFD-DEM scheme to very fine meshes contribute to a scant amount of numerical results of particle settling in viscoplastic fluids. This paper presents the two-way coupling CFD-DEM simulation of the particle sedimentation in a quiescent Bingham fluid. The results for terminal particle velocity showed good agreement with the experimental data. Owing to the viscoplastic behavior of the fluid, low values of the relaxation parameter of the solid-phase must be specified to obtain accurate results.
Słowa kluczowe
Rocznik
Strony
409--422
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Federal University of Technology – Paraná (UTFPR), Mechanical Engineering, Curitiba, Paraná, Brazil
  • Federal University of Technology – Paraná (UTFPR), Mechanical Engineering, Curitiba, Paraná, Brazil
  • Federal University of Technology – Paraná (UTFPR), Mechanical Engineering, Curitiba, Paraná, Brazil
  • Federal University of Technology – Paraná (UTFPR), Mechanical Engineering, Curitiba, Paraná, Brazil
Bibliografia
  • 1. Akhshik S., Behzad M., Rajabi M., 2016, CFD-DEM simulation of the hole cleaning process in a deviated well drilling: the effects of particle shape, Particuology, 25, 72-82.
  • 2. Atapattu D.D., Chhabra R.P., Uhlherr P.H.T., 1995, Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag, Journal of Non-Newtonian Fluid Mechanics, 59, 245-265.
  • 3. Beverly C.R., Tanner R.I., 1989, Numerical analysis of extrudate swell in viscoelastic materials with yield stress, Journal of Rheology, 33, 989-1009.
  • 4. Bird R.B., Dai G.C., Yarusso B.J., 1983, The rheology and flow of viscoplastic materials, Reviews in Chemical Engineering, 1, 1-70.
  • 5. CD-Adapco, 2018, Simcenter STAR-CCM+ User Guide, Siemens PLM Software.
  • 6. Cocco R., Fullmer W.D., Liu P., Hrenya C.M., 2017, CFD-DEM modeling the small to understand the large, Chemical Engineering Progress, 113, 38-45.
  • 7. Coussot P., 2005, Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • 8. Crowe C.T., Schwarzkopf J.D., Sommerfeld M., Tsuji Y., 2012, Multiphase Flows with Droplets and Particles, 2nd ed. CRC Press.
  • 9. Cundall P.A., Strack O.D.L., 1979, A discrete numerical model for granular assemblies, Géotechnique, 29, 47-65.
  • 10. Deb S., Tafti D.K., 2013, A novel two-grid formulation for fluid-particle systems using the discrete element method, Powder Technology, 246, 601-616.
  • 11. Dedegil M.Y., 1987, Drag coefficient and settling velocity of particles in non-Newtonian suspensions, Journal of Fluids Engineering, 109, 319-323.
  • 12. Deen N.G.,Van Sint Annaland M., Van der Hoef M.A., Kuipers J.A.M., 2007, Review of discrete particle modeling of fluidized beds, Chemical Engineering Science, 62, 28-44.
  • 13. Glowinski R., Wachs A., 2011, On the numerical simulation of viscoplastic fluid flow, [In:] Handbook of Numerical Analysis, Elsevier, 483-717.
  • 14. Kohnen G., Rüger M., Sommerfeld M., 1994, Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, ASME-PUBLICATIONS-FED, 185, 191-202.
  • 15. Lali A.M., Khare A.S., Joshi J.B., Nigam K.D.P., 1989, Behaviour of solid particles in viscous non-Newtonian solutions: settling velocity, wall effects and bed expansion in solid-liquid fluidized beds, Powder Technology, 57, 39-50.
  • 16. Macosko C.W., 1994, Rheology Principles, Measurements, and Applications. Advances in Interfacial Engineering Series, VCH, New York.
  • 17. Oliveira G.M., Franco A.T., Negrão C.O.R., Martins A.L., Silva R.A., 2013, Modeling and validation of pressure propagation in drilling fluids pumped into a closed well, Journal of Petroleum Science and Engineering, 103, 61-71.
  • 18. Patankar S.V., 1980, Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere Pub. Corp., McGraw-Hill,Washington, New York.
  • 19. Prashant, Derksen J.J., 2011, Direct simulations of spherical particle motion in Bingham liquids, Computers and Chemical Engineering, 35, 1200-1214.
  • 20. Saha G., Purohit N.K., Mitra A.K., 1992, Spherical particle terminal settling velocity and drag in Bingham liquids, International Journal of Mineral Processing, 36, 273-281.
  • 21. Sosnowski M., Gnatowska R., Sobczyk J., Wodziak W., 2019, Computational domain discretization for CFD analysis of flow in a granular packed bed, Journal of Theoretical and Applied Mechanics, 57, 833-842.
  • 22. Thompson R.L., Soares E.J., 2016, Viscoplastic dimensionless numbers, Journal of Non-Newtonian Fluid Mechanics, 238, 57-64.
  • 23. Tsuji Y., Kawaguchi T., Tanaka T., 1993, Discrete particle simulation of two-dimensional fluidized bed, Powder Technology, 77, 79-87.
  • 24. Valentik L.,Whitmore R.L., 1965, The terminal velocity of spheres in Bingham plastics, British Journal of Applied Physics, 16, 1197-1203.
  • 25. Yao L.M., Xiao Z.M., Liu J.B., Zhang Q., Wang M., 2020, An optimized CFD-DEM method for fluid-particle coupling dynamics analysis, International Journal of Mechanical Sciences, 174, 105503.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e148b7bb-ec11-4aea-a10f-833cf6c5f5d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.