PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza niestacjonarnego pola temperatury elektrycznego grzejnika podłogowego z wykorzystaniem procesora karty graficznej

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The analysis of a non-stationary temperature field of an electric floor heater with the use of a graphics processing unit
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono równoległą metodę obliczania niestacjonarnego pola temperatury elektrycznego grzejnika podłogowego sterowanego regulatorem dwupołożeniowym. Dwuwymiarowe równanie przewodnictwa cieplnego, opisujące rozkład pola temperatury w grzejniku, zdyskretyzowano niejawną metodą różnic skończonych. Do rozwiązania otrzymanego układu równań zastosowano metodę BiCGStab z prekondycjonerem Jacobiego. Algorytm powyższej metody zaimplementowano na procesor karty graficznej.
EN
The article presents a parallel method of computing the non-stationary temperature field of an electric floor heater regulated by an on/off controller. A two-dimensional heat equation, which describes a temperature field distribution in the heater, was discretized with the use of the implicit finite difference method. In order to solve the obtained system of equations, the BiCGStab method with the Jacobi preconditioner was used. The algorithm of this method was implemented on a graphics processing unit.
Rocznik
Strony
282--289
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Politechnika Białostocka, Wydział Elektryczny, ul. Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] Żukowski M., Ogrzewanie podłogowe, Oficyna Wydawnicza Politechniki Białostockiej, Białystok, (2009).
  • [2] Watson R.D., Chapman K.S., Radiant Heating & Cooling Handbook, McGraw-Hill Companies, (2004).
  • [3] Woodson R.D., Radiant Floor Heating, Second Edition, McGraw-Hill, New York, (2009).
  • [4] Sattari S., Farhanieh B., A parametric study on radiant floor heating system performance, Renewable Energy, 31 (2006), No. 10, 1617-1626.
  • [5] Holopainen R., Tuomaala P., Piippo J., Uneven gridding of thermal nodal networks in floor heating simulations, Energy and Buildings, 39 (2007), No. 10, 1107-1114.
  • [6] Jin X., Zhang X., Luo Y., A calculation method for the floor surface temperature in radiant floor system, Energy and Buildings, 42 (2010), No. 10, 1753-1758.
  • [7] Liu Y., Wang D., Liu J., Study on heat transfer process for inslab heating floor, Building and Environment, 54 (2012), 77-85.
  • [8] Gołębiowski J., Kwiećkowski S., Dynamics of threedimensional temperature field in electrical system of floor heating, International Journal of Heat and Mass Transfer, 45 (2002), No. 12, 2611-2622.
  • [9] Lin K., Zhang Y., Xu X., Di H., Yang R., Qin P., Modeling and simulation of under-floor electric heating system with shapestabilized PCM plates, Building and Environment, 39 (2004), No. 12, 1427-1434.
  • [10] Gołębiowski J., Kwiećkowski S., Zaręba M., Bycul R.P., Analiza nieustalonego pola termicznego w elektrycznych grzejnikach podłogowych i w kablach prądu stałego, Polska Akademia Nauk - Komitet Elektrotechniki, Oficyna Wydawnicza Politechniki Białostockiej, Warszawa-Białystok, (2010).
  • [11] Bozkır O., Canbazoğlu S., Unsteady thermal performance analysis of a room with serial and parallel duct radiant floor heating system using hot airflow, Energy and Buildings, 36 (2004), No. 6, 579-586.
  • [12] Gołębiowski J., Forenc J., Parallel computations of the step response of a floor heater with the use of a graphics processing unit. Part 1: Models and algorithms, Bull. Pol. Ac.: Tech., 61 (2013), No. 4, 943-948.
  • [13] Gołębiowski J., Forenc J., Parallel computations of the step response of a floor heater with the use of a graphics processing unit. Part 2: Results and their evaluation, Bull. Pol. Ac.: Tech., 61 (2013), No. 4, 949-954.
  • [14] Farber R., CUDA Application Design and Development, Morgan Kaufmann, Amsterdam, (2011).
  • [15] Cook S., CUDA Programming. A Developer’s Guide to Parallel Computing with GPUs, Morgan Kaufmann, Amsterdam, (2013).
  • [16] Incropera F., De Witt D., Bergman T., Lavine A., Introduction to Heat Transfer, John Wiley&Sons, Hoboken, (2007).
  • [17] Barrett R., Berry M., Chan T.F., Demmel J., Donato J.M., Dongarra J., Eijkhout V., Pozo R., Romine Ch., Van der Vorst H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, (1994).
  • [18] Saad Y., Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, (2003).
  • [19] Van der Vorst H., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. and Stat. Comput., 13 (1992), No. 2, 631-644.
  • [20] CUBLAS Library, User Guide, NVIDIA Corporation, Santa Clara, CA, (2013).
  • [21] CUSPARSE Library, NVIDIA Corporation, Santa Clara, CA, (2013).
  • [22] Karbowski A., Niewiadomska-Szynkiewicz E. (red.), Programowanie równoległe i rozproszone, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, (2009).
  • [23] Jalili-Marandi V., Dinavahi V., SIMD-based large-scale transient stability simulation on the graphics processing unit, IEEE Trans. on Power Systems, 25 (2010), No. 3, 1589-1599.
  • [24] Intel Math Kernel Library. Reference Manual, MKL 10.3 Update 10, Intel Corporation, (2012).
  • [25] Naumov M., Incomplete-LU and Cholesky preconditioned iterative methods using CUSPARSE and CUBLAS. White Paper, NVIDIA Corporation, London, (2011).
  • [26] Naumov M., Preconditioned Block-Iterative Methods on GPUs, Proceedings in Applied Mathematics and Mechanics, 12 (2012), No. 1, 11-14.
  • [27] Haeri S., Shrimpton J.S., Fully resolved simulation of particle deposition and heat transfer in a differentially heated cavity, International Journal of Heat and Fluid Flow, 50 (2014), 1-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1482d36-3e0e-48c3-82c6-d2106f0ae5b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.