PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Druk 3D jako technologia przyszłości – część 1

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
3D printing as a technology of the future – part 1
Języki publikacji
PL
Abstrakty
PL
Technologia druku 3D w ostatnich latach przeżywa rozwój i cieszy się sporym zainteresowaniem, zarówno u użytkowników „domowych” jak i u producentów wieloseryjnych i projektantów. W poniższym artykule omówiono technologie druku 3D oraz materiały z których możliwe jest drukowanie za pomocą tej technologii. W pierwszej części przedstawiono w sumie siedem różnych metod otrzymywania wydruków 3D, od najprostszych i najbardziej popularnych do tych bardziej wyszukanych, charakteryzujących się większą dokładnością i szeroką gamą materiałów, z których można korzystać. W drugiej części artykułu po krótce opisano szereg materiałów, które można wykorzystywać do technologii druku 3D – m.in.: kompozyty, metale czy ceramikę.
EN
The 3D printing technology has been rapid developing in recent years and enjoys considerable interest, both among "home" users, as well as multi-series producers and designers. The following article discusses 3D printing technologies and materials from which it is possible to print using this technology. The first part presents a total of seven different methods of obtaining 3D prints, from the simplest and most popular to the more sophisticated, with greater accuracy and a wide range of materials that can be used. The second part of the article briefly describes a number of materials that can be used for 3D printing technology - including composites, metals and ceramics.
Rocznik
Tom
Strony
92--105
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • Sieć Badawcza Łukasiewicz - Instytut Przemysłu Skórzanego
  • Sieć Badawcza Łukasiewicz - Instytut Przemysłu Skórzanego
Bibliografia
  • [1] Gibson I., Rosen D. W., Stucker B.: Additive manufacturing technologies, rapid prototyping to direct digital manufacturing, Springer, Boston 2010.
  • [2] Chua C. K., Leong K. F.: 3D Printing and additive manufacturing, principles and applications, World Scientific, Singapur 2016.
  • [3] Bandyopadhyay A., Bose S.: Additive manufacuring - 2th edition, CRC Press, Floryda 2019.
  • [4] Zhang J., Jung Y-G.: Additive manufacturing: materials, processes, quantifications and applications - 1st edition, Butterworth-Heinemann, Oksford 2018.
  • [5] Holzmann P., Robert J., Breitenecker A., Soomro A., Erich J. S.: User entrepreneur business models in 3D printing, Journal of Manufacturing Technology Management 28 (1), 2017, str. 75-94.
  • [6] Syed A. M. T., Elias P. K., Amit B., Susmita B., Lisa O., Charitidis C.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today 1, 2017, str. 1-16.
  • [7] Ze-Xian L., Yen T. C., Ray M. R., Mattia D., Metcalfe I. S., Patterson D. A.: Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, Journal of Membrane Science 523 (1), 2016, str. 596-613.
  • [8] ASTM F2792-12a: Standard terminology for additive manufacturing technologies.
  • [9] Yuanbin W., Blache W., Xun X.: Selection of additive manufacturing processes, Rapid Prototyping Journal 23 (2), 2017, str. 434-447.
  • [10] https://www.thefabricator.com – dostęp dnia 08. 08. 2020.
  • [11] Ugur M. D., Gharehpapagh B., Yaman U., Dolen M.: The role of additive manufacturing in the era of Industry 4.0, Procedia Manufacturing 11, 2017, str. 545-554.
  • [12] https://www.ey.com – dostęp dnia 08. 08. 2020.
  • [13] Stansbury J. W., Idacavage M. J.: 3D Printing with polymers: Challenges among expanding options and opportunities, Dental Materials 32, 2016 str. 54-64.
  • [14] http://canadamakes.ca/what-is-material-jetting/ – dostęp dnia 08. 08. 2020.
  • [15] Tiwari S. K., Pande S., Agrawal S., Bobade S. M.: Selection of selective laser sintering materials for different applications, Rapid Prototyping Journal 21 (6), 2015, str. 630-648.
  • [16] Ventola C. L.: Medical application for 3D printing: current and projected uses, Medical Devices 39 (10), 2014, str. 1-8.
  • [17] Vikayavenkataraman S., Jerry Y. H. F., Wen F. L.: 3D printing and 3D bioprinting in pediatrics, Bioengineering 4 (63), 2017, str. 1-11.
  • [18] Low Z., Chua Y. T., Ray B. M., Mattia D., Metcalfe I. S., Patterson D. A.: Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, Journal of Membrane Science 523 (1), 2017, str. 596-613.
  • [19] https://www.think3d.in – dostęp dnia 08. 08. 2020.
  • [20] Horst D. J., Duvoisin C. A., Viera R. A.: Additive manufacturing at Industry 4.0: a review, International Journal of Engineering and Technical Research 8 (8), 2018, str. 1-8.
  • [21] Martin J. H., Yahata B. D., Hundley J. M., Mayer J. A., Schaedler T. A., Pollock T. M.: 3D Printing of high-strength aluminium alloys, Nature 549 (7672), 2017, str. 356-369.
  • [22] Hitzler L., Alifui-Segbaya F., William P., Heine B., Heitzmann M., Hall W., Merkel M., Ochner A.: Additive manufacturing of cobalt based dental alloys: analysis of microstructure and physicomechanical properties, Advances in Materials Science and Engineering 8, 2018, str. 1-12.
  • [23] Murr L. E.: Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication, Journal of Materials Sciences and Technology 3 (10), 2016, str. 987-995.
  • [24] DebRoy T., Wei H. L., Zuback J. S., Mukherjee T., Elmer J. W., Milewski J. O., Beese A. M., Wilson-Heid A., De A., Zhang W.: Additive manufacturing of metallic components -process, structure and properties, Progress in Materials Science 92, 2018, str. 112-224.
  • [25] Uhlmann E., Kersting R., Klein T. B., Cruz M. F., Borille A. V.: Additive manufacturing of titanium alloy for aircraft components, Procedia CIRP 35, 2015, str. 55-60.
  • [26] Trevisan F., Calignano F., Aversa A., Marchese G., Lombardi M., Biamino S., Ugues D., Manfredi D.: Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications, Journals Indexing and Metrics 16 (2), 2018, str. 57-67.
  • [27] Caminero M. A., Chacon J. M., Garcia-Moreno I., Rodriguez G. P.: Impact damage resistance of 3D printed continues fibre reinforced thermoplastic composites using fused deposition modelling, Composite Part B: Engineering 148, 2018, str. 93-103.
  • [28] Dizon J. R. C., Jr A. H. E., Chen Q., Advincula R. C.: Mechanical characterization of 3d-printed polymers, Additive Manufacturing 20, 2018, str. 44-67.
  • [29] Xin W., Man J., Zuowan Z., Jihua G., David H.: 3D printing of polymer matrix composites: a review and prospective, Composites Part B 110, 2017, str. 442-458.
  • [30] Baldassarre F., Ricciardi F.: The additive manufacturing in the Industry 4.0 era: the case of an italian FabLab, Journal of Emerging Trends in Marketing and Management 1 (1), 2017, str. 1-11.
  • [31] Owen D., Hickey J., Cusson A., O. Ayeni I., Rhoades J., Yifan D., Limmin W., Hye -Yeong, Nishant P. H., Raikar P., Yeon-Gil P., Jing Z.: 3D printing of ceramic components using a customized 3D ceramic printer, Progress in Additive Manufacturing 1, 2018, str. 1-7.
  • [32] Zocca A., Lima P., Günster J.: LSD-based 3D printing of alumina ceramics, Journal of Ceramic Science and Technology 8 (1), 2017, str. 141-148.
  • [33] Gmeiner R., Deisinger U., Schonherr J., Lenchner B.: Additive manufacturing of bioactive glasses and silicate bioceramics, Journal of Ceramics Science and Technology 6 (2), 2015, str. 75-86.
  • [34] Lanko T., Panov S., Sushchyns’ky O., Pylypenko M., Dmytrenko O.: Zirconium alloy powders for manufacture of 3D printed particles used in nuclear power industry, Problems of Atomic Science and Technology 1 (113), 2018, str. 148-153.
  • [35] Xueyuan T., Yuxi Y.: Electrospinning preparation and characterization of alumina nanofibers with high aspect ratio, Ceramics International 41 (8), 2017, str. 9232-9238.
  • [36] Hao W., Liu Y., Zhou, Chen H. H., Fang D.: Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composite, Polymer Testing 65, 2018, str. 29-34.
  • [37] Sathishkumar T. P., Satheeshkumar S., Naveen J.: Glass fiber-reinforced polymer composites – a review, Journal of Reinforced Plastics and Composites 33 (13), 2014, str. 1-14.
  • [38] Liu Z., Zhang L., Yu E., Ying Z., Zhang Y., Liu X., Eli W.: Modification of glass fiber surface and glass fiber reinforced polymer composites challenges and opportunities: from organic chemistry perspective, Current Organic Chemistry 19 (11), 2015, str. 991-1010.
  • [39] Jian-Yuan L., Jia A., Chee K. C.: Fundamentals and applications of 3D printing for novel materials, Applied materials today 7, 2017, str. 120-133.
  • [40] Van H. J.: Additive manufacturing of shape memory alloy, Shape Memory and Superelasticity 4 (2), 2018, str. 309-312.
  • [41] Yang Y., Chen,Y. Wei Y., Li Y.: 3D Printing of shape memory polymer for functional part fabrication, International Jurnal of Advanced Manufacturing Technology 84 (9), 2015, str. 2079-2095.
  • [42] Lili L., Yuanyuan M., Ke C., Yang Z.: 3D printing complex egg white protein objects: properties and optimization, Food and Bioprocess Technology 1, 2018, str. 1-11.
  • [43] Singh P., Raghav A.: 3D food printing: a revolution in food technology, Acta Scientific Nutritional Health 2 (2), 2018, str. 1-2.
  • [44] Goulas A., Friel R. J.: 3D printing with moondust, Rapid Prototyping Journal 22 (6), 2016, str. 864-870.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1471016-bbaa-4676-ae20-8131275d486d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.