PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Pyrolox sorbent for vanadium(V) ions removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The sorption of vanadium(V) ions from acidic solutions using the Pyrolox sorbent was studied at varying ions concentrations, pH, contact time and temperature. The investigated ions were determined by means of graphite-furnace atomic absorption spectrometry (GF-AAS). The sorption capacity of vanadium(V) ions was examined in the pH range 2-10. The adsorption capacities of vanadium(V) ions depend on the pH values. Therefore, the initial pH 2 of vanadium(V) results in the highest adsorption capacities. The sorption vanadium(V) kinetics was investigated. The experimental data were analyzed using the pseudo-first-order, pseudo-second-order forms, Elovich, and intra-particle diffusion models. The kinetics of vanadium(V) sorption is described by the pseudo-first-order in the best way. The results indicate the endothermic process of V(V) ions sorption. The presented results of vanadium ions recovery from the solutions obtained as a result of spent catalysts leaching indicate the possibility of vanadium recovery.
Słowa kluczowe
Rocznik
Strony
art. no. 147974
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Skłodowska, Lublin, Poland
  • Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Skłodowska, Lublin, Poland
Bibliografia
  • BARELLI, L., BIDINI, G., OTTAVIANO, P.A., PELOSI, D., 2019. Vanadium redox flow batteries application to electric buses propulsion: Performance analysis of hybrid energy storage system. J. Energy Storage 24, 100770.
  • CAO, X., DIAO, M., ZHANG, B., LIU, H., WANG, S., YANG, M., 2017. Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China. Chemosphere 183, 9-17.
  • CHEN, Y., FENG, Q. SHAO, Y., ZHANG G., OU, L., LU, Y., 2006. Research on the recycling of valuable metals in spent Al2O3-based catalyst. Miner. Eng. 19,94–97.
  • CIBATI, A., PAGNANELLI, F., TORO, L., 2015. Metal recovery from end-oflife hydrotreating catalysts by selective precipitation: Laboratory tests and preliminary process analysis. Environ. Prog. Sustain. Energy. 34, 703–12.
  • FANG, D., LIAO, X., ZHANG, X., TENG, A., XUE, X., 2017. A novel resource utilization of the calcium-based semi-dry flue gas desulfurization ash: As a reductant to remove chromium and vanadium from vanadium industrial wastewater. J. Hazard. Mater. 342, 436-445.
  • FREUNDLICH, H.M.F. 1906. Über Die Absorption in Lösungen. Z. Phys. Chem. 57, 385–470.
  • DANIEL, A.B., ZAHIR, E., ASGHAR, M.A., 2021. Remediation of Vanadium (V) and Chromium (III) Ions from Aqueous Media by Modified Nanocellulose Obtained from Coconut Coir. J. Macromol. Sci. Phys.60, 500-520.
  • DUBININ, M.M.; ZAVERINA, E.D.; RADUSHKEVICH, L.V., 1947. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zh. Fiz. Khim. 21, 1351–1362.
  • GHASEMI, N.; TAMRI, P.; KHADEMI, A.; NEZHAD, N.S.; ALWI, S.R.W., 2013 Linearized Equations of Pseudo Second-order Kinetic for the Adsorption of Pb(II) on Pistacia Atlantica Shells. IERI Procedia. 5, 232–237.
  • GŁADYSZ-PŁASKA, A., SKWAREK, E., BUDYNAK, T.M., KOŁODYŃSKA, D., 2017. Metal Ions Removal Using Nano Oxide Pyrolox™ Material. Nanoscale Res. Lett. 12, 95.
  • HAO, L., ZHANG, B. , TIAN, C., LIU, Y., SHI, C., CHENG, M., FENG, C., 2015. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells. J. Power Sources. 287, 43-49.
  • HO, Y.S.; McKAY, G., 1998. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. Prot. 76, 183–191.
  • KAJJUMBA, G.W., AYDIN, S., GÜNEYSU, S., 2018. Adsorption isotherms and kinetics of vanadium by shale and coal waste. Adsorp. Sci. Technol. 36, 936-952.
  • KOŁODYŃSKA, D., MAJDAŃSKA, M., BUDYNAK,T.M., 2019. Lanthanum and copper ions recovery from nickel-metal hydride cells leaching solutions by the oxide adsorbent Pyrolox. J. Environ. Chem. Eng. 7, 103003.
  • LANGMUIR, I., 1917. The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc. 39, 1848–1906.
  • LE, M.N., & LEE, M.S., 2020. A Review on Hydrometallurgical Processes for the Recovery of Valuable Metals from Spent Catalysts and Life Cycle Analysis Perspective. Miner. Proces. Extr. 42, 335-354.
  • LI, M., ZHANG, B., ZOU, S., LIU, Q., YANG, M., 2020. Highly Selective Adsorption of Vanadium (V) by Nano-Hydrous Zirconium Oxide-Modified Anion Exchange Resin. J. Hazard. Mater. 384, 121386.
  • LI, H-Y., YANG, Y., B, ZHANG, M., WEI, W., XIE, B., 2019. A novel anion exchange method based on in situ selectively reductive desorption of Cr(VI) for its separation from V(V): Toward the comprehensive use of hazardous wastewater. J. Hazard. Mater. 368, 670–679.
  • MINOIA, C., SABBIONI, E., APOSTOLI, P., PIETRA, R., POZZOLI, L., GALLORINI, M., NICOLAOU, G., ALESSIO, L., CAPODAGLIO, E., 1990. Trace element reference values in tissues from inhibitants of the European Community. I. A study of 46 elements in urine, blood and serum of Italian subjects. Sci. Total Environ. 95, 89-105.
  • MISHRA, D., CHAUDHURY G. R., KIM D. J., AHN J. G., 2010. Recovery of metal values from spent petroleum catalyst using leaching-solvent extraction technique. Hydrometallurgy. 101, 35–40.
  • PAGNANELLI, F., FERELLA, F., DE MICHELIS, I., VEGLIÒ, F., 2011. Adsorption onto activated carbon for molybdenum recovery from leach liquors of exhausted hydrotreating catalysts. Hydrometallurgy. 110, 67–72.
  • PAINULY, A.S., 2015. Separation and recovery of vanadium from spent vanadium pentaoxide catalyst by Cyanex 272. Environ. Syst. Res. 4, 1–7.
  • STANISZ, M., KLAPISZEWSKI, Ł., KOŁODYŃSKA, D., JESIONOWSKI, T., 2021. Development of functional lignin-based spherical particles for the removal of vanadium(V) from an aqueous system. Int. J. Biol. Macromol. 186, 181-193.
  • SURUČIĆ, L., TADIĆ, T., JANJIĆ, G., MARKOVIĆ, B., NASTASOVIĆ, A., ONJIA, A., 2021 Recovery of Vanadium (V) Oxyanions by a Magnetic Macroporous Copolymer Nanocomposite Sorbent. Metals 11, 1777.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e141ff79-2df2-47b0-8320-681557c5915f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.