PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating four remote sensing based models to estimate latent heat flux in semi-arid climate for heterogeneous surface coverage of western Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimal estimation of water balance components at the local and regional scales is essential for many applications such as integrated water resources management, hydrogeological modelling and irrigation scheduling. Evapotranspiration is a very important component of the hydrological cycle at the soil surface, particularly in arid and semi-arid lands. Mapping evapotranspiration at high resolution with internalised calibration (METRIC), trapezoid interpolation model (TIM), two-source energy balance (TSEB), and soil-plant-atmosphere and remote sensing evapotranspiration (SPARSE) models were applied using Landsat 8 images for four dates during 2014-2015 and meteorological data. Surface energy maps were then generated. Latent heat flux estimated by four models was then compared and evaluated with those measured by applying the method of Bowen ratio for the various days. In warm periods with high water stress differences and with important surface temperature differences, METRIC proves to be the most robust with the root-mean-square error (RMSE) less than 40 W∙m-2. However, during the periods with no significant surface temperature and soil humidity differences, SPARSE model is superior with the RMSE of 35 W∙m-2. The results of TIM are close to METRIC, since both models are sensitive to the difference in surface temperature. However, SPARSE remains reliable with the RMSE of 55 W∙m-2 unlike TSEB, which has a large deviation from the other models. On the other hand, during the days when the temperature difference is small, SPARSE and TSEB are superior, with a clear advantage of SPARSE serial version, where temperature differences are less important.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
259--275
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • University Mustapha Stambouli of Mascara, Laboratory of Biological Systems and Geomatics, P.O. Box 305, Route de Mamounia, 29000, Mascara, Algeria
  • University Mustapha Stambouli of Mascara, Laboratory of Biological Systems and Geomatics, P.O. Box 305, Route de Mamounia, 29000, Mascara, Algeria
  • University Mustapha Stambouli of Mascara, Laboratory of Biological Systems and Geomatics, P.O. Box 305, Route de Mamounia, 29000, Mascara, Algeria
Bibliografia
  • ALLEN R.G., PEREIRA L.S., RAES D. SMITH M. 1998. Crop evapotranspiration – guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. No. 56. Rome. FAO. ISBN 92-5-104219-5 pp. 300.
  • ALLEN R.G., TASUMI M., TREZZA R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) – model. Journal of Irrigation and Drainage Engineering. Vol. 133(4) p. 380–394. DOI 10.1061/(ASCE) 0733-9437(2007)133:4(380).
  • BARSI J.A., SCHOTT J.R., PALLUCONI F.D., HOOK S.J. 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Observing Systems X. Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE). Vol. 5882. p. 136–142. DOI 10.1117/12.619990.
  • BASTIAANSSEN W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology. Vol. 229(1–2) p. 87–100. DOI 10.1016/S0022-1694(99)00202-4.
  • BASTIAANSSEN W.G.M., MENENTI M., FEDDES R.A., HOLTSLAG A.A.M. 1998. Remote sensing surface energy balance algorithm for land (SEBAL), 1. Formulation. Journal of Hydrology. Vol. 212–213(1–4) p. 198–212. DOI 10.1016/S0022-1694(98)00253-4.
  • BENZATER B., ELOUISSI A., BENARICHA B., HABI M. 2019. Spatio-temporal trends in daily maximum rainfall in northwestern Algeria (Macta watershed case, Algeria). Arabian Journal of Geosciences. Vol. 12 (370) p. 1–18. DOI 10.1007/s12517-019-4488-8.
  • BERK A., ANDERSON G.P., BERNSTEIN L.S., ACHARYA P.K., DOTHE H., MATTHEW M.W., ..., HOKE M.L. 1999. MODTRAN4 radiative transfer modeling for atmospheric correction. Optical spectroscopic techniques and instrumentation for atmospheric and space research III. Proceedings of Society of Photo-Optical Instrumentation Engineers. SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Vol. 3756 p. 348–353. DOI 10.1117/12.366388.
  • BOULET G., MOUGENOT B., LHOMME J.P., FANISE P., LILI-CHABAANE Z., OLIOSO A., ..., LAGOUARDE J.P. 2015. The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat. Hydrology and Earth System Sciences. Vol. 19(11) p. 4653–4672. DOI 10.5194/hess-19-4653-2015.
  • BRUTSAERT W. 1982. Evaporation into the atmosphere: Theory, history and applications. Springer Dordrecht. ISBN 978-90-277-1247-9 pp. 299. DOI 10.1007/978-94-017-1497-6.
  • CHANDER G., MARKHAM B.L., HELDER D.L. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. Vol. 113 (5) p. 893–903. DOI 10.1016/j.rse.2009.01.007.
  • CHEHBOUNI A., ESCADAFAL R., DUCHEMIN B., BOULET G., SIMONNEAUX V., DEDIEU G., ..., SOBRINO J.A. 2008. An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: The SUDMED Programme. International Journal of Remote Sensing. Vol. 29(17–18) p. 5161–5181. DOI 10.1080/01431160802036417.
  • CHIROUZE J., BOULET G., JARLAN L., FIEUZAL R., RODRIGUEZ J.C., EZZAHAR , J., ..., CHEHBOUNI G. 2014. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrology and Earth System Sciences. Vol. 18(3) p. 1165–1188. DOI 10.5194/hess-18-1165-2014.
  • CHOI M., KUSTAS W.P., ANDERSON M.C., ALLEN R.G., LI F., KJAERSGAARD J. H. 2009. An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, U.S.) during SMACEX. Agricultural and Forest Meteorology. Vol. 149(12) p. 2082–2097. DOI 10.1016/j.agrformet.2009.07.002.
  • CHOUDHURY B.J., IDSO S.B., REGINATO R.J. 1987. Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agricultural and Forest Meteorology. Vol. 39 (4) p. 283–297. DOI 10.1016/0168-1923(87)90021-9.
  • COLAIZZI P.D., KUSTAS W.P., ANDERSON M.C., AGAM N., TOLK J.A., EVETT S.R., H OWELL T.A., GOWDA P.H., O’SHAUGHNESSY S.A. 2012. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Advances in Water Resources. Vol. 50 p. 134–151. DOI 10.1016/j.advwatres.2012.06.004.
  • CONSOLI S., VANELLA D. 2014. Comparisons of satellite-based models for estimating evapotranspiration fluxes. Journal of Hydrology. Vol. 513 p. 475–489. DOI 10.1016/j.jhydrol.2014.03.071.
  • CRAGO R.D., BRUTSAERT W. 1992. A comparison of several evaporation equations. Water Resources Research. Vol. 28(3) p. 951–954. DOI 10.1029/91WR03149.
  • DOS SANTOS C.A.C., MARIANO D.A., NASCIMENTO F.C.A., DANTAS F.R.C., OLIVEIRA G., SILVA M.T., ..., NEALE C.M.U. 2020. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. International Journal of Applied Earth Observation and Geoinformation. Vol. 85, 101982 p. 1–11. DOI 10.1016/j.jag.2019.101982.
  • ELOUISSI A., HABI M., BENARICHA B., BOUALEM S.A. 2017. Climate change impact on rainfall spatio-temporal variability (Macta watershed case, Algeria). Arabian Journal of Geosciences. Vol. 10(22), 496 p. 1–14. DOI 10.1007/s12517-017-3264-x.
  • FELLAH S., HAMIMED A., MILOUDI K., KHALDI A., BENSLIMANE M., TEIXEIRA A.H.D. 2021. Application of SEBAL and T s/VI trapezoid models for estimating actual evapotranspiration in the Algerian semi-arid environment to improve agricultural water management. Revista Brasileira de Meteorologia. Vol. 36(2) p. 219–236. DOI 10.1590/0102-77863610020.
  • FRENCH A.N., JACOB F., ANDERSON M.C., KUSTAS W.P., TIMMERMANS W., GIESKE A., ..., BRUNSELL N. 2005. Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment. Vol. 99(1–2) p. 55–65. DOI 10.1016/j.rse.2005.05.015.
  • GENTINE P., ENTEKHABI D., POLCHER J. 2011. The diurnal behavior of evaporative fraction in the soil-vegetation-atmospheric boundary layer continuum. Journal of Hydrometeorology. Vol. 12(6) p. 1530–1546.
  • HAMIMED A., KHALDI A., MEHOR M., SEDDINI A. 2009. Estimation of daily actual evapotranspiration in Algerian semiarid environment with satellite ASTER. EARSeL eProceedings. Vol. 8(2) p. 140–151.
  • HAMIMED A., NEHAL L., KHALDI A., AZZAZ H. 2014. Contribution à la spatialisation de l’évapotranspiration d’un agro-système semi-aride en Algérie par utilisation de la télédétection et du modele METRIC [Contribution to the spatialization of evapotranspiration in a semi-arid agro-system in Algeria using remote sensing and METRIC model]. Physio-Géo – Géographie Physique et Environnement. Vol. 8 p. 197–213. DOI 10.4000/physio-geo.4063.
  • JIANG L., ISLAM S. 2001. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resources Research. Vol. 37(2) p. 329–340. DOI 10.1029/2000WR900255.
  • KAUFMAN Y.J., TANRÉ D., REMER L.A., VERMOTE E.F., CHU A., HOLBEN B. N. 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres. Vol. 102(D14) p. 17051–17067. DOI 10.1029/96JD03988.
  • KHALDI A., HAMIMED A., MEDERBAL K. SEDDINI A. 2011. Obtaining evapotranspiration and surface energy fluxes with remotely sensed data to improve agricultural water management. African Journal of Food Agriculture Nutrition and Development. Vol. 11 (1) p. 4558–4581. DOI 10.4314/ajfand.v11i1.65881.
  • KUSTAS W.P., DAUGHTRY C.S. 1990. Estimation of the soil heat flux/net radiation ratio from spectral data. Agricultural and Forest Meteorology. Vol. 49(3) p. 205–223. DOI 10.1016/0168-1923(90)90033-3.
  • KUSTAS W.P., NORMAN J.M. 1999. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology. Vol. 94(1) p. 13–29. DOI 10.1016/S0168-1923(99)00005-2.
  • LIANG S., SHUEY C., RUSS A., FANG H., CHEN M., WALTHALL C., DAUGHTRY C., HUNT B. 2002. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sensing of Environment. Vol. 84(1) p. 25–41. DOI 10.1016/S0034-4257(02)00068-8.
  • MADUGUNDU R., AL-GAADI K.A., TOLA E., HASSABALLA A.A., PATIL V.C. 2017. Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images. Hydrology and Earth System Sciences. Vol. 21(12) p. 6135–6151. DOI 10.5194/hess-21-6135-2017.
  • MKHWANAZI M., CHÁVEZ J.L., RAMBIKUR E.H. 2012. Comparison of large aperture scintillometer and satellite-based energy balance models in sensible heat flux and crop evapotranspiration determination. International Journal of Remote Sensing Applications. Vol. 2(1) p. 24–30.
  • MORAN M.S., JACKSON R.D., RAYMOND L.H., GAY L. W., SLATER P.N. 1989. Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data. Remote Sensing of Environment. Vol. 30(1) p. 77–87.
  • MUZYLEV E.L., USPENSKII A.B., STARTSEVA Z.P., VOLKOVA E.V., KUKHARSKII A.V. 2010. Modeling water and heat balance components for the river basin using remote sensing data on underlying surface characteristics. Russian Meteorology and Hydrology. Vol. 35 p. 225–235. DOI 10.3103/S1068373910030106.
  • NEHAL L., HAMIMED H., KHALDI A., SOUIDI, Z., ZAAGANE M. 2017. Evapotranspiration and surface energy fluxes estimation using the Landsat-7 enhanced thematic mapper plus image over a semiarid agrosystem in the north-west of Algeria. Revista Brasileira de Meteorologia. Vol. 32 p. 691–702. DOI 10.1590/0102-7786324016.
  • OLIOSO A., JACOB F. 2002. Estimation de l’évapotranspiration à partir de mesures de télédétection [Evapotranspiration estimation using remote sensing data]. La Houille Blanche. Vol. 88(1) p. 62–67. DOI 10.1051/lhb/2002008.
  • OLIOSO A., CHAUKI H., COURAULT D., WIGNERON J.P. 1999. Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sensing of Environment. Vol. 68 p. 341–356.
  • PAULSON C.A. 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology. Vol. 9(6) p. 857–861.
  • SEGUIN B., ITIER B. 1983. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. International Journal of Remote Sensing. Vol. 4(2) p. 371–383. DOI 10.1080/01431168308948554.
  • STAENZ K., SECKER J., GAO B.C., DAVIS C., NADEAU C. 2002. Radiative transfer codes applied to hyperspectral data for the retrieval of surface reflectance. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 57(3) p. 194–203. DOI 10.1016/S0924-2716(02)00121-1.
  • STISEN S., SANDHOLT I., NØRGAARD A., FENSHOLT R., JENSEN K.H. 2008. Combining the triangle method with thermal inertia to estimate regional evapotranspiration – Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sensing of Environment. Vol. 112(3) p. 1242–1255. DOI 10.1016/j.rse.2007.08.013.
  • TANG R., LI Z.L. 2015. Evaluation of two end-member-based models for regional land surface evapotranspiration estimation from MODIS data. Agricultural and Forest Meteorology. Vol. 202 p. 69–82.
  • TEIXEIRA A.D.C., BASTIAANSSEN W.G., AHMAD M.U.D., BOS M.G. 2009. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil: Part A: Calibration and validation. Agricultural and Forest Meteorology. Vol. 149(3–4) p. 462–476. DOI 10.1016/j.agrformet.2008.09.016.
  • TIMMERMANS W.J., KUSTAS W.P., ANDERSON M.C., FRENCH A.N. 2007. An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes. Remote Sensing of Environment. Vol. 108(4) p. 369–384. DOI 10.1016/j.rse.2006.11.028.
  • USGS undated a. Earth Explorer. [online]. United States Geological Survey [Access 19.10.2016]. Available at: http://earthexplorer.usgs.gov
  • USGS undated b. Landsat Missions [online]. United States Geological Survey [Access 05.03.2022]. Available at: https://www.usgs.gov/landsat-missions/landsat-8
  • VAN DE GRIEND A.A., OWE M. 1993. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing. Vol. 14(6) p. 1119–1131. DOI 10.1080/01431169308904400.
  • VIDAL A., PERRIER A. 1990. Irrigation monitoring by following the water balance from NOAA-AVHRR thermal infrared data. IEEE Transactions on Geoscience and Remote Sensing. Vol. 28(5) p. 949–954. DOI 10.1109/36.58984.
  • WWAP 2012. Managing water under uncertainty and risk: The United Nations World Water Development Report 4. Paris, France. UNESCO World Water Assessment Programme pp. 886.
  • ZOU M., ZHONG L., MA Y., HU Y., HUANG Z., XU K., FENG L. 2018. Comparison of two satellite-based evapotranspiration models of the Nagqu River Basin of the Tibetan Plateau. Journal of Geophysical Research: Atmospheres. Vol. 123(8) p. 3961–3975. DOI 10.1002/2017JD027965.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e13d859b-ca89-498d-9275-656d611ae08a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.