PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring the Hydrogen Potential of a River in the Central Andes of Peru From the Cloud

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hydrogen potential is one of the parameters of the water which is variable in rivers throughout their journey over the cities, so the objective of the work was to monitor (from the cloud) the pH of the Upamayu river waters (Huancavelica region), located in the Central Andes of Peru. An electronic system was implemented, comprising: DS18B20 temperature sensor, 4502C pH sensor, ESP32 controller, NEO 6M GPS global positioning system, LabVIEW NXG platform, in addition to the web server developed in ThingSpeak. The measurements were established under the protocol for water resources of Peru. As a result, a pH monitoring system of the waters of the river under study was verified. Through the sensors, it takes the data and sends them to the web server located in the cloud via the implemented algorithm. The data read from any remote place through an application implemented in LabVIEW NXG, representing the monitoring station on a GIS map. It was concluded that the values of the hydrogen potential are different in relation to its territorial distribution and in the dry season. Varying pH after the discharge of polluting sources of the population and the places of cattle raising was found; likewise, regeneration of the waters at a certain distance was shown.
Słowa kluczowe
Twórcy
  • Universidad Nacional de Huancavelica, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar N° 755, Pampas-Tayacaja, Huancavelica, Perú
  • Universidad Nacional de Huancavelica, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar N° 755, Pampas-Tayacaja, Huancavelica, Perú
  • Universidad Nacional del Centro del Perú, Unidad de Postgrado de la Facultad de Ciencias Forestales y del Ambiente, Av. Mariscal Castilla N° 3909-4089, Huancayo, Perú
  • Universidad Nacional de Huancavelica, Facultad de Ingeniería Electrónica-Sistemas, Jr. La Mar N° 755, Pampas-Tayacaja, Huancavelica, Perú
Bibliografia
  • 1. ANA. 2016. National protocol for monitoring the quality of surface water resources. G. industrial A.S.R.L. (ed.); 1st ed.). http://repositorio.ana.gob.pe/handle/20.500.12543/209
  • 2. Bedla D. & Halecki W. 2021. The value of river valleys for restoring landscape features and the continuity of urban ecosystem functions – A review. Ecological Indicators, 129. DOI:10.1016/j.ecolind.2021.107871
  • 3. Brown R., Mcclelland N.I., Deini R. 1972. Indicators of Environmental Quality. Environmental Science Research, 1(1), 173–182.
  • 4. Bruce A., Brown C., Avello P., Beane G., Bristow J., Ellis L., Fisher S., St. George Freeman S., Jiménez A., Leten J., Matthews N., Romano O., Ruiz-Apilanez I., Saikia P., Shouler M., Simkins P. 2020. Human dimensions of urban water resilience: Perspectives from Cape Town, Kingston upon Hull, Mexico City and Miami. Water Security, 9, 100060. DOI:10.1016/j.wasec.2020.100060
  • 5. Carbajal-Morán H., Zárate Quiñones R.H., Márquez Camarena J.F. 2021. Gray Water Recovery System Model by Solar Photocatalysis with TiO2 Nanoparticles for Crop Irrigation. Journal of Ecological Engineering, 22(4), 78–87. DOI:10.12911/22998993/134034
  • 6. Custodio M. & Peñaloza R. 2021. Data on the spatial and temporal variability of physical-chemical water quality indicators of the Cunas River, Peru. Chemical Data Collections, 33, 100672. DOI:10.1016/j.cdc.2021.100672
  • 7. Espressif Systems. 2020. The internet of things with ESP32. http://esp32.net/
  • 8. Falkenmark M. & Wang-Erlandsson L. 2021. A water-function-based framework for understanding and governing water resilience in the Anthropocene. One Earth, 4(2), 213–225. DOI:10.1016/j.oneear.2021.01.009
  • 9. Grande J.A., Loayza-Muro R., Alonso-Chaves F.M., Fortes J.C., Willems B., Sarmiento A.M., Santisteban M., Dávila J.M., de la Torre M.L., Durães N., Diaz-Curiel J., Luís A.T. 2019. The Negro River (Ancash-Peru): A unique case of water pollution, three environmental scenarios and an unresolved issue. Science of The Total Environment, 648, 398–407. DOI:10.1016/j.scitotenv.2018.08.068
  • 10. Huang J., Zhang Y., Bing H., Peng J., Dong F., Gao J., Arhonditsis G.B. 2021. Characterizing the river water quality in China: Recent progress and on-going challenges. Water Research, 201. DOI:10.1016/j.watres.2021.117309
  • 11. Kumar A., Taxak A.K., Mishra S., Pandey R. 2021. Long term trend analysis and suitability of water quality of River Ganga at Himalayan hills of Uttarakhand, India. Environmental Technology and Innovation, 22, 101405. DOI:10.1016/j.eti.2021.101405
  • 12. Liu D., Li M., Ji Y., Fu Q., Li M., Abrar Faiz M., Ali S., Li T., Cui S., Imran Khan M. 2020. Spatialtemporal characteristics analysis of water resource system resilience in irrigation areas based on a support vector machine model optimized by the modified gray wolf algorithm. Journal of Hydrology, 125758. DOI:10.1016/j.jhydrol.2020.125758
  • 13. Mahlknecht J., González-Bravo R., Loge F.J. 2020. Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean. Energy, 194, 116824. DOI:10.1016/j.energy.2019.116824
  • 14. MakerElectronico. 2021. DS18B20 sensor de temperatura sumergible. https://www.makerelectronico.com/producto/ds18b20-sensor-temperatura-sumergible/
  • 15. National Instruments. 2021. LabVIEW NXG – NI. https://www.ni.com/es-cr/shop/labview/labviewnxg.html
  • 16. Peña-Guzmán C., Ulloa-Sánchez S., Mora K., Helena-Bustos R., Lopez-Barrera E., Alvarez J., Rodriguez-Pinzón M. 2019. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of Environmental Management, 237, 408–423. DOI:10.1016/j.jenvman.2019.02.100
  • 17. Saavedra M., Junquas C., Espinoza J.-C., Silva Y. 2020. Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes. Atmospheric Research, 234, 104711. DOI:10.1016/j.atmosres.2019.104711
  • 18. Scidle. 2017. ¿Cómo usar un sensor de pH? http://scidle.com/es/como-usar-un-sensor-de-ph-con-arduino/
  • 19. Torres P., Hernán C., Patiño P. 2009. Índices de Calidad de Agua en Fuentes Superficiales utilizadas en la producción de agua para consumo humano. Revista Ingenierías – Universidad de Medellín, 8(15), 79–94. http://www.scielo.org.co/pdf/rium/v8n15s1/v8n15s1a09.pdf
  • 20. Ublox. 2016. GPS NEO-6M-U-Blox. https://www.ublox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf
  • 21. Xia J., Li Z., Zeng S., Zou L., She D., Cheng D. 2021. Perspectives on eco-water security and sustainable development in the Yangtze River Basin. Geoscience Letters, 8(1). DOI:10.1186/s40562–021–00187–7
  • 22. Zhang X., Zhang Y., Shi P., Bi Z., Shan Z., Ren L. 2021. The deep challenge of nitrate pollution in river water of China. Science of The Total Environment, 770, 144674. DOI:10.1016/j.scitotenv.2020.144674
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e13a9866-c915-4bc7-b810-1c4a546d76e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.