PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Determinants of electromobility development from the perspective of a zero emission, innovative and resilient economy

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Determinanty rozwoju elektromobilności z perspektywy zeroemisyjnej, innowacyjnej i odpornej gospodarki
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to identify the critical factors and assess the specific actions conditioning the development of electromobility from the perspective of a zero-carbon, innovative and resilient economy. These issues have a particular dimension in relation to individual mobility. The study used a combination of primary and secondary data, using various research methods and techniques, such as descriptive analysis, desk research, diagnostic survey, cause-and-effect analysis and statistical analysis. Additionally, in-depth interviews were conducted with experts in managerial positions. The literature review and the results of our own research confirmed the importance of the identified factors in the uptake of electric cars. At the same time, the study highlighted the high complexity of problems regarding investment decisions determining the development of electromobility. Taking active steps to increase the level of sustainability and resilience of the electromobility system should first focus on further development of charging infrastructure, uptake of electric vehicles, development of renewable energy sources and creation of an electric vehicle battery value chain. The main expectations for the development of electromobility are to reduce CO2 emissions, reduce dependence on fossil fuel supplies, increase the competitiveness and innovation of the economy and reduce external costs generated by transport. Attempts were made to achieve the originality of the research carried out through its measurable nature. The proposed electromobility development model may contribute to the improvement of decision-making tools regarding the allocation of public funds and other sources for investments so that they contribute to the sustainable development of mobility systems.
PL
Celem artykułu jest identyfikacja czynników krytycznych i ocena działań szczegółowych warunkujących rozwój elektromobilności z perspektywy zeroemisyjnej, innowacyjnej i rezylientnej gospodarki. Zagadnienia te mają szczególny wymiar w odniesieniu do mobilności indywidualnej. W badaniu wykorzystano kombinację danych pierwotnych i wtórnych, stosując różne metody i techniki badawcze, takie jak: analiza opisowa, analiza deskresearch, ankieta diagnostyczna, analiza przyczynowo-skutkowa i analiza statystyczna. Dodatkowo przeprowadzono wywiady pogłębione z ekspertami na stanowiskach menedżerskich. Przegląd literatury przedmiotu oraz wyniki badań własnych potwierdziły znaczenie zidentyfikowanych czynników w procesie absorpcji samochodów elektrycznych. Badanie uwidoczniło jednocześnie dużą złożoność problemów w zakresie decyzji inwestycyjnych warunkujących rozwój elektromobilności. Podjęcie aktywnych działań w zakresie zwiększenia poziomu zrównoważenia i odporności systemu elektromobilności należy w pierwszej kolejności skoncentrować na dalszym rozwoju infrastruktury ładowania, upowszechnianiu pojazdów elektrycznych, rozwoju odnawialnych źródeł energii oraz kreowaniu łańcucha wartości baterii do pojazdów elektrycznych. Główne oczekiwania w zakresie rozwoju elektromobilności dotyczą redukcji emisji CO2, ograniczenia zależności od dostaw paliw kopalnych, wzrostu konkurencyjności i innowacyjności gospodarki oraz ograniczenia kosztów zewnętrznych generowanych przez transport. Oryginalność zrealizowanego badania, starano się uzyskać poprzez wymierny jego charakter. Zaproponowany model rozwoju elektromobilności może przyczynić się do doskonalenia narzędzi decyzyjnych w zakresie alokacji środków publicznych i z innych źródeł na inwestycje, by przyczyniły się one do zrównoważonego rozwoju systemów mobilności.
Rocznik
Tom
Strony
art. no. 732
Opis fizyczny
Bibliogr. 72 poz., rys., tab.
Twórcy
  • University of Lodz, Department of Logistics and Innovation, Rewolucji 1905 r. Street 37/39, 90-214 Lodz, Poland
  • University of Lodz, Department of Logistics and Innovation
Bibliografia
  • Abas, A. P., Yong, J. E. D., Mahlia, T. M. I., & Hannan, M. A. (2019). Techno-economic analysis and environmental impact of electric vehicle. IEEE Access, 7, 98565-98578. https://doi.org/10.1109/ACCESS.2019.2929530
  • Arias, N. B., Hashemi, S., Andersen, P. B., Træholt, C., & Romero, R. (2020). Assessment of economic benefits for EV owners participating in the primary frequency regulation markets. International Journal of Electrical Power & Energy Systems, 120, 105985. https://doi.org/10.1016/j.ijepes.2020.105985
  • Baker, E., Goldstein, A. P., & Azevedo, I. M. L. (2021). A perspective on equity implications of net zero energy systems. Energy and Climate Change, 2, 100047. https://doi.org/10.1016/j.egycc.2021.100047
  • Barrett, J., & Bivens, J. (2021). The stakes for workers in how policymakers manage the coming shift to all-electric vehicles. Washington: Economic Policy Institute. https://www.epi.org/publication/ev-policy-workers/
  • Champagne, M., & Dubé, J. (2023). The impact of transport infrastructure on firms’ location decision: A meta-analysis based on a systematic literature review. Transport Policy, 131, 139-155. https://doi.org/10.1016/j.tranpol.2022.11.015
  • Chinoracky, R., Stalmasekova, N., & Corejova, T. (2022). Trends in the Field of Electromobility—From the Perspective of Market Characteristics and Value-Added Services: Literature Review. Energies, 15(17), 6144. https://doi.org/10.3390/en15176144
  • Coban, H. H., Rehman, A., & Mohamed, A. (2022). Analyzing the Societal Cost of Electric Roads Compared to Batteries and Oil for All Forms of Road Transport. Energies, 15(5), 1925. https://doi.org/10.3390/en15051925
  • Das, H., Rahman, M., Li, S., & Tan, C. (2020). Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120, 109618. https://doi.org/10.1016/j.rser.2019.109618
  • de Souza, J. V. R., de Mello, A. M., & Marx, R. (2019). When is an Innovative Urban Mobility Business Model Sustainable? A Literature Review and Analysis. Sustainability, 11(6), 1761. https://doi.org/10.3390/su11061761
  • Dróżdż, W., Miśkiewicz, R., Pokrzywniak, J., & Elżanowski, F. (2019). Urban electromobility in the context of Industry 4.0. Toruń: Wydawnictwo Adam Marszałek.
  • Du, H., Liu, D., Sovacool, B. K., Wang, Y., Ma, S., & Li, R. Y. M. (2018). Who buys New Energy Vehicles in China? Assessing social-psychological predictors of purchasing awareness, intention, and policy. Transportation Research Part F: Traffic Psycholgy and Behaviour, 58, 56-69. https://doi.org/10.1016/j.trf.2018.05.008
  • ETC/CME. (2020). Renewable energy in Europe 2020: recent growth and knock-on effects. https://www.eionet.europa.eu/etcs/etc-cme/products/etc-cme-reports/etc-cme-report-7-2020-renewable-energy-in-europe-2020-recent-growth-and-knock-on-effects
  • European Commission. (2019). Communication from the Commission to the European Parliament, the European Council, the Council, the Economic and Social Committee and the Committee of the Regions, The European Green Deal, Pub. L. No. 52019DC0640. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN
  • European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Sustainable and Smart Mobility Strategy – putting European transport on track for the future, Pub. L. No. 52020DC0789. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0789
  • European Commission. (2021). EU Reference Scenario 2020: energy, transport and GHG emissions: trends to 2050. Luxembourg: Publications Office. https://pure.iiasa.ac.at/id/eprint/17356/
  • European Commission. (2023). UE Transport in Figures: Statistical Pocketbook 2023. https://transport.ec.europa.eu/facts-funding/studies-data/eu-transport-figures-statistical-pocketbook/statistical-pocketbook-2023_en
  • Fescioglu-Unver, N., & Yıldız, A. M. (2023). Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing. Renewable and Sustainable Energy Reviews, 188, 113873. https://doi.org/10.1016/j.rser.2023.113873
  • Gallo, M., & Marinelli, M. (2020). Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability, 12(18), 7499. https://doi.org/10.3390/su12187499
  • Gevaers, R., de Voorde, E., & van Vanelslander, T. (2014). Cost Modelling and Simulation of Last-mile Characteristics in an Innovative B2C Supply Chain Environment with Implications on Urban Areas and Cities. Procedia – Social and Behavioral Sciences, 125, 410-411. https://doi.org/10.1016/j.sbspro.2014.01.1483
  • Ghasemi-Marzbali, A. (2022). Fast-charging station for electric vehicles, challenges and issues: a comprehensive review. Journal Energy Storage, 49, 104136. https://doi.org/10.1016/j.est.2022.104136
  • Gómez Vilchez, J. J., Julea, A., Lodi, C., & Marotta, A. (2022). An analysis of trends and policies promoting alternative fuel vessels and their refueling infrastructure in Europe. Frontiers in Energy Research, 10, 904500. https://doi.org/10.3389/fenrg.2022.904500
  • Gupta, R. S., Tyagi, A., & Anand, S. (2021). Optimal allocation of electric vehicles charging infrastructure, policies and future trends. Journal of Energy Storage, 43, 103291. https://doi.org/10.1016/j.est.2021.103291
  • Haidar, B., & Aguilar Rojas, M. T. (2022). The Relationship between Public Charging Infrastructure Deployment and Other Socio-Economic Factors and Electric Vehicle Adoption In France. Research in Transportation Economics, 95, 101208. https://doi.org/10.1016/j.retrec.2022.101208
  • Hall D., Xie Y., Minjares R., Lutsey N., Kodjak D. (2021). Decarbonizing road transport by 2050: Effective policies to accelerate the transition to zero-emission vehicles. International Council on Clean Transportation. https://doi.org/10.13140/RG.2.2.33438.87361
  • Hasan, S. (2021). Assessment of Electric Vehicle Repurchase Intention: A Survey-Based Study on the Norwegian EV Market. Transportation Research Interdisciplinary Perspectives, 11, 100439. https://doi.org/10.1016/j.trip.2021.100439
  • Helmers, E., Dietz, J., & Weiss, M. (2020). Sensitivity Analysis in the Life-Cycle Assessment of Electric vs. Combustion Engine Cars under Approximate Real-World Conditions. Sustainability, 12(3), 1241. https://doi.org/10.3390/su12031241
  • IEA. (2023). CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022
  • IPCC. (2023). Climate Change 2023: Impacts, Adaptation and Vulnerability. https://www.ipcc.ch/report/ar6/wg2/
  • Jagiełło, A. (2021). Elektromobilność w kształtowaniu rozwoju drogowego transportu miejskiego w Polsce. Gdańsk: Wydawnictwo Uniwersytetu Gdańskiego. (in Polish).
  • Karmaker, A. K., Behrens, S., Hossain, M. J., & Pota, H. (2023). Multi-stakeholder perspectives for transport electrification: A review on placement and scheduling of electric vehicle charging infrastructure. Journal of Cleaner Production, 427, 139145. https://doi.org/10.1016/j.jclepro.2023.139145
  • Kolz, D., & Schwartz, M. (2017). Key Factors for the Development of Electro Mobility. WIT Transactions on Ecology and the Environment, 224, 225-233. https://doi.org/10.2495/ESUS170211
  • Kumar, R. R., & Alok, K. (2020). Adoption of electric vehicle: A literature review and prospects for sustainability. Journal of Cleaner Production, 253, 119911. https://doi.org/10.1016/j.jclepro.2019.119911
  • Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. https://doi.org/10.1016/j.treng.2020.100005
  • Li, W., Stanula, P., Egede, P., Kara, S., & Herrmann, C. (2016). Determining the main factors influencing the energy consumption of electric vehicles in the usage phase. Procedia CIRP, 48, 352-357. https://doi.org/10.1016/j.procir.2016.03.014
  • Lia, X., Lepoura, D., Heymannc, F., & Maréchal, F. (2023). Electrification and digitalization effects on sectoral energy demand and consumption: A prospective study towards 2050. Energy, 279, 127992. https://doi.org/10.1016/j.energy.2023.127992
  • Liao, F., Molin, E. J. E., & van Wee, G. P. (2017). Consumer preferences for electric vehicles: a literature review. Transport Reviews, 37(3), 252-275. https://doi.org/10.1080/01441647.2016.1230794
  • Liu, Z., Song, J., Kubal, J., Susarla, N., Knehr, K. W., Islam, E., & Ahmed, S. (2021). Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles. Energy Policy, 158, 112564. https://doi.org/10.1016/j.enpol.2021.112564
  • Magalhães, I., & Santos, E. (2022). Evaluating the potential of mobility plans for achieving sustainable urban development. Research in Transportation Business & Management, 43, 100743. https://doi.org/10.1016/j.rtbm.2021.100743
  • Mantouka, E. G., Fafoutellis, P., Vlahogianni, E. I., & Oprea, G.-M. (2022). Understanding user perception and feelings for autonomous mobility on demand in the COVID-19 pandemic era. Transportation Research Interdisciplinary Perspectives, 16, 100692. https://doi.org/10.1016/j.trip.2022.100692
  • Milakis, D., van Arem, B., & Vanwee, B. (2017). Policy and society related implications of automated driving: a review of literature and directions for future research. Journal of Intelligent Transportation Systems, 21(4), 324-348. https://doi.org/10.1080/15472450.2017.1291351
  • Mirzaei, M. A., Yazdankhah, A. S., Mohammadi-Ivatloo, B., Marzband, M., Shafie-khah, M., & Catalão, J. (2019). Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage system. Journal of Cleaner Production, 223, 747-758. https://doi.org/10.1016/j.jclepro.2019.03.021
  • Mnusso, A., & Rothengatter, W. (2013). Internalisation of external costs of transport–A target driven approach with a focus on climate change. Transport Policy, 29, 303-314. https://doi.org/10.1016/j.tranpol.2012.07.001
  • Moreno, A. T., Michalski, A., Llorca, C., & Moeckel, R. (2018). Shared autonomous vehicles effect on vehicle-km traveled and average trip duration. Journal of Advanced Transportation, 8969353. https://doi.org/10.1155/2018/8969353
  • Nour, M., Chaves-Ávila, J. P., Magdy, G., & Sánchez-Miralles, Á. (2020). Review of positive and negative impacts of electric vehicles charging on electric power systems. Energies, 13(18), 4675. https://doi.org/10.3390/en13184675
  • Petruccelli, U. (2015). Assessment of external costs for transport project evaluation: Guidelines in some European countries. Environmental Impact Assessment Review, 54, 61-71. https://doi.org/10.1016/j.eiar.2015.05.004
  • Rajak, S., Parthiban, P., & Dhanalakshmi, R. (2016). Sustainable transportation systems performance evaluation using fuzzy logic. Ecological Indicators, 71, 503-513. https://doi.org/10.1016/j.ecolind.2016.07.031
  • Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC, Pub. L. No. 32023R1542, 191 OJ L (2023). https://eur-lex.europa.eu/eli/reg/2023/1542/oj
  • Rehman, M. A., Numan, M., Tahir, H., Rahman, U., Khan, M. W., & Iftikhar, M. Z. (2023). A comprehensive overview of vehicle to everything (V2X) technology for sustainable EV adoption. Journal of Energy Storage, 74, 109304. https://doi.org/10.1016/j.est.2023.109304
  • Ren, R., Hu, W., Dong, J., Sun, B., Chen, Y., & Chen, Z. (2020). A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy. International Journal of Environmental Research and Public Health, 17(1), 261. https://doi.org/10.3390/ijerph17010261
  • Romare M. & Dahllöf L. (2017). Greenhouse Gas Emissions from Lithium-Ion Batteries. Stockholm: Swedish Environmental Research Institute.
  • Sadeghian, O., Oshnoei, A., Mohammadi-ivatloo, B., Vahidinasab, V., & Anvari-Moghaddam, A. (2022). A comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and challenges. Journal of Energy Storage, 54, 105241. https://doi.org/10.1016/j.est.2022.105241
  • Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. (2021). A review on electric vehicles: Technologies and challenges. Smart Cities, 4(1), 372-404. https://doi.org/10.3390/smartcities4010022
  • Shafiei, M., & Ghasemi-Marzbali, A. (2022). Fast-charging station for electric vehicles, challenges and issues: A comprehensive review. Journal of Energy Storage, 49, 104136. https://doi.org/10.1016/j.est.2022.104136
  • Shaukat, N., Khan, B., Ali, S. M., Mehmood, C. A., Khan, J., Farid, U., Majid, M., Anwar, S. M., Jawad, M., & Ullah, Z. (2018). A survey on electric vehicle transportation within smart grid system. Renewable and Sustainable Energy Reviews, 81, 1329-1349. https://doi.org/10.1016/j.rser.2017.05.092
  • Shi, R., Li, S., Zhang, P., & Lee, K. Y. (2020). Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization. Renewable Energy, 153, 1067-1080. https://doi.org/10.1016/j.renene.2020.02.027
  • Silvestri L., Forcina A., Silvestri C., Traverso M. (2021). Circularity potential of rare earths for sustainable mobility: Recent developments, challenges and future prospects. Journal of Cleaner Production, 72, 101885. https://doi.org/10.1016/j.erss.2020.101885
  • Sovacool, B. K., Kim, J., & Yang, M. (2021). The hidden costs of energy and mobility: A global meta-analysis and research synthesis of electricity and transport externalities. Energy Research & Social Science, 72, 101885. https://doi.org/10.1016/j.erss.2020.101885
  • Sroka, M. (2022). The impact of the human factor on the functioning of the quality management system in the enterprise. Scientific Journals of the Maritime University of Szczecin, 72(144), 175-182. https://doi.org/10.17402/546
  • Suhail, M., Akhtar, I., & Kirmani, S. (2021). Objective functions and infrastructure for optimal placement of electrical vehicle charging station: a comprehensive survey. IETE Journal of Research, 69(8), 5250-5260. http://dx.doi.org/10.1080/03772063.2021.1959425
  • Thompson, A. W., & Perez, Y. (2020). Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications. Energy Policy, 137, 111136. https://doi.org/10.1016/j.enpol.2019.111136
  • Tian, M. W., & Talebizadehsardari, P. (2021). Energy cost and efficiency analysis of building resilience against power outage by shared parking station for electric vehicles and demand response program. Energy, 215, 119058. https://doi.org/10.1016/j.energy.2020.119058
  • van Soest, H. L., den Elzen, M. G., & van Vuuren, D. P. (2021). Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nature Communications, 12(1), 2140. https://doi.org/10.1038/s41467-021-22294-x
  • Victor-Gallardo, L., Roccard, J., Campos, P., Malley, C. S., Lefevre, E. N., & Quiros-Tortos, J. (2022). Identifying cross-sectoral policy synergies for decarbonization: towards shortlived climate pollutant mitigation action in Costa Rica. Journal of Cleaner Production, 379, 134781. https://doi.org/10.1016/j.jclepro.2022.134781
  • Wappelhorst, S. (2021). On the electrification path: Europe’s progress towards clean transportation. https://theicct.org/publication/on-the-electrification-path-europes-progress-towards-clean-transportation/
  • Weber, J. (2022). Bewegende Zeiten: Mobilität der Zukunft. Berlin: Springer.
  • Weber, K. M., & Rohracher, H. (2012). Legitimizing research, technology and innovation policies for transformative change: Combining insights from innovation systems and multi-level perspective in a comprehensive ‘failures’ framework. Research Policy, 41(6), 1037-1047. https://doi.org/10.1016/j.respol.2011.10.015
  • Woo, J., Choi, H., & Ahn, J. (2017). Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: a global perspective. Transportation Research Part D: Transport and Environment, 51, 340-350. https://doi.org/10.1016/j.trd.2017.01.005
  • Xia, X., Li, P., Xia, Z., Wu, R., & Cheng, Y. (2022). Life cycle carbon footprint of electric vehicles in different countries: A review. Separation and Purification Technology, 301, 122063. https://doi.org/10.1016/j.seppur.2022.122063
  • Yu, A., Wei, Y., Chen, W., Peng, N., & Peng, L. (2018). Life cycle environmental impacts and carbon emissions: a case study of electric and gasoline vehicles in China. Transportation Research Part D: Transport and Environment, 65, 409-420. https://doi.org/10.1016/j.trd.2018.09.009
  • Yu, H., Niu, S., Shang, Y., Shao, Z., Jia, Y., & Jian, L. (2022). Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications. Renewable and Sustainable Energy Reviews, 168, 112812. https://doi.org/10.1016/j.rser.2022.112812
  • Zhao, X., Ke, Y., Zuo, J., Xiong, W., & Wu, P. (2020). Evaluation of sustainable transport research in 2000–2019. Journal of Cleaner Production, 256(2), 120404. https://doi.org/10.1016/j.jclepro.2020.120404
  • Zuo, T., Wei, H., & Chen, N. (2021). Incorporating low-stress bicycling connectivity into expanded transit service coverage. Transportation Research Record: Journal of the Transportation Research Board, 2675(4), 102614. https://doi.org/10.1177/0361198121998956
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e127cc9f-8a20-429e-a865-fb0eb9447c5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.