PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strong laws of large numbers for the sequence of the maximum of partial sums of i.i.d. random variables

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let 0 < p ≤ 2, let {Xn; n ≥ 1} be a sequence of independent copies of a real-valued random variable X, and set Sn = X1 + … + Xn, n ≥ 1. Motivated by a theorem of Mikosch (1984), this note is devoted to establishing a strong law of large numbers for the sequence {max1 ≤ k ≤ n |Sk|; n ≥ 1}. More specifically, necessary and sufficient conditions are given for [wzór] a.s., where log x = loge max{e, x}, x ≥ 0.
Rocznik
Strony
19--38
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Tianjin University of Finance and Economics, Research Center for Mathematics and Economics, Tianjin 300222, China
autor
  • Lakehead University, Department of Mathematical Sciences, Thunder Bay, ON P7B 5E1, Canada
  • University of Florida, Department of Statistics, Gainesville, Florida 32611, USA
Bibliografia
  • [1] Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, third edition, Springer, New York 1997.
  • [2] K. L. Chung, On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. 64 (1948), pp. 205-233.
  • [3] E. Csáki, On the lower limits of maxima and minima of Wiener process and partial sums, Z. Wahrsch. Verw. Gebiete 43 (1978), pp. 205-221.
  • [4] P. Hartman and A. Wintner, On the law of the iterated logarithm, Amer. J. Math. 63 (1941), pp. 169-176.
  • [5] N. C. Jain and W. E. Pruitt, The other law of the iterated logarithm, Ann. Probab. 3 (1975), pp. 1046-1049.
  • [6] H. Kesten, The limit points of a normalized random walk, Ann. Math. Statist. 41 (1970), pp. 1173-1205.
  • [7] A. Kolmogoroff, Sur la loi forte des grands nombres, C. R. Acad. Sci. Paris Sér. Math. 191 (1930), pp. 910-912.
  • [8] J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendantes, Fund. Math. 29 (1937), pp. 60-90.
  • [9] T. Mikosch, The law of the iterated logarithm for independent random variables outside the domain of partial attraction of the normal law, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 3 (1984), pp. 35-39 (in Russian).
  • [10] V. V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon, Oxford 1995.
  • [11] Y. Zou and X. Liu, An extension of a theorem of Mikosch, Statist. Probab. Lett. 120 (2017), pp. 81-86.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e12373fb-4295-4bb6-8d65-62831021e862
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.