PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Different Strain Rates of Polypropylene Geotextiles on Slope Factor of Safety

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to their effectiveness, environmental friendliness, and economic benefits, geosynthetics are increasingly utilized in civil engineering, especially woven geotextiles for soil stabilization reinforcement. Standard strength testing assumes a constant rate of elongation for samples, but in practice, the loading rate of geosynthetics in the field is much lower. Selecting appropriate materials is crucial for the effectiveness and durability of structures. For polymeric materials like woven geotextiles, the strain rate affects their properties. Understanding these properties is essential for safe design and construction. This article explores the potential application of polypropylene geotextiles for soil reinforcement in embankments. The polymer properties are discussed, along with the methodology for strength testing of geosynthetics and the results of the research. The findings allowed for the calculation of the long-term strength of samples at different elongation rates, which was used to verify changes in the factor of safety for a slope model. The highest tensile strength was 33.44 kN/m at a stretching speed of 20 mm/min. At 2 mm/min, it was 30.35 kN/m, and at 0.2 mm/min, it was 28.70 kN/m. These results determined the factor of safety: F = 2.08 for the fastest stretched sample and F = 1.97 for the slowest. Theoretical approaches to understanding changes in strength parameters due to variations in strain rate have been presented, as well as computational approaches using the Bishop method in GEO5 software, based on the results from tensile strength tests.
Wydawca
Rocznik
Strony
134--144
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering Warszawa, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering Warszawa, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering Warszawa, Poland
  • Warsaw University of Life Sciences – SGGW, Faculty of Civil and Environmental Engineering Warszawa, Poland
Bibliografia
  • [1] Agrawal B. J., Geotextile its application to civil engineering-overview, Geotextile, India 2011.
  • [2] Allen T.M., R. J., Soil Reinforcement Loads in Geosynthetic Walls at Working Stress Conditions, Geosynthetics International Volume 9 Issue 5–6, January 2002, pp. 525–566.
  • [3] Benjamim C.V.S., Bueno B.S., Zornberg J.G., Field monitoring evaluation of geotextile-reinforced soil-retaining walls. Geosynth. Int., 14 (2) (2007), pp. 100–118.
  • [4] Bishop A.W., The use of the slip circle in the stability analysis of slopes. Géotechnique, 1955, 5(1): 7–17
  • [5] Dąbrowska J., Kiersnowska A., Zięba Z., Trach Y., Sustainability of Geosynthetics-Based Solutions, (2023) Environments - MDPI, 10 (4), art. no. 64.
  • [6] Dobrzański L.A. Podstawy nauki o materiałach i metaloznawstwo. Wydawnictwa Naukowo-Techniczne, Warsaw 2002.
  • [7] Duszyńska A., Sikora Z., Dobór wyrobów geosyntetycznych do zbrojenia gruntu. Inżynieria Morska i Geotechnika, 5/2014.
  • [8] EBGEO, Recommendations for 3-Design and Analysis of Earth Structures using Geosynthetic Reinforcements. Ernst & Sohn Verlag, Berlin, 2011.
  • [9] EN ISO 10318-1:2015/Amd 1:201810318:2015 Geosynthetics – Part 1: Terms and Definitions.
  • [10] EN ISO 10319:2015 Geosynthetics – Wide-with tensile test.
  • [11] EN ISO 9862:2007 Geosynthetics – Sampling and preparation of test specimens.
  • [12] Greenwood J.H., The effect of installation damage on the long-term design strength of a reinforcing geosynthetic. Geosynth Int. 2002, 9(3):247–258.
  • [13] Greenwood, J. H., Designing to residual strength of geosynthetics instead of stress-rupture. Geosynthetics International, 4, No. 1, 1–10, 1998.
  • [14] Greenwood, J.H., Schroeder, H.F., Voskamp, W., Durability of Geosynthetics; Stichting Curent: Gouda, The Netherlands; CUR: Rotterdam, The Netherlands, 2012.
  • [15] Hassan, W., Alshameri, B., Nawaz, M.N. et al. Experimental study on shear strength behavior and numerical study on geosynthetic-reinforced cohesive soil slope. Innov. Infrastruct. Solut. 7, 349 (2022).
  • [16] Hassan, W., Farooq, K., Hassan, M., Alshameri, B., Shahzad, A., Nawaz, M.N., Azab, M. Experimental investigation of mechanical behavior of geosynthetics in different soil plasticity indexes, Transportation Geotechnics, Volume 39, 2023, 100935, ISSN 2214–3912. https://doi.org/10.1016/j.trgeo.2023.100935.
  • [17] Hirakawa D., Kongkitkul W., Tatsuoka F., Uchimura T., Time-dependent stress–strain behavior due to viscous properties of geogrid reinforcement. Geosynthetics International, 10, No. 6, 2003.
  • [18] Hirakawa D., Uchimura T., Shibata Y. and Tatsuoka F., Time-dependent deformation of geosynthetics and geosynthetic-reinforced soil structures. Geosynthetics - 7 ICG - Delmas, Gourc & Girard 2002.
  • [19] Hsuan et al., Long-term performace and lifetime prediction of geosynthetics, EuroGeo4 Keynote Paper, p. 1–40, 2008.
  • [20] Ingold T.S., The Geotextiles and Geomembranes Manual, Elsevier Science Publishers Ltd., Oxford, United Kingdom, 610 p. 1994.
  • [21] Instytut Techniki Budowlanej. Projektowanie konstrukcji oporowych, stromych skarp i nasypów z gruntu zbrojonego geosyntetykami. Instrukcje, Wytyczne, Poradniki nr 429/2008.
  • [22] Janbu, N., Slope stability computations. In Embankment Dam Engineering, Casagrande Memorial Volume. Edited by E. Hirschfield and S. Poulos, 1973 pp. 47–86. Wiley, New York.
  • [23] Kiersnowska A., Koda E., Fabianowski W. Kawalec J., Effect of the impact of chemical and environmental factors on the durability of the high density polyethylene (HDPE) geogrid in a sanitary landfill. Appl. Sci. 7, 22, 2017.
  • [24] Kiersnowska A., Stępień S., Research the effect of temperature changes on strain and strength of woven geotextile. Włókno Odzież, Skóra, 2014, 68, 25–29.
  • [25] Kiersnowska, A., Fabianowski, W., Koda, E. The influence of the accelerated aging conditions on the properties of polyolefin geogrids used for landfill slope reinforcement. Polymers, 12 (9), art. no. 1874, 2020.
  • [26] Koda E., Kiersnowska A., Kawalec J., and Osiński P. Landfill slope stability improvement incorporating reinforcements in reclamation process applying observational method. Applied Sciences, 10(5), 1572, 2020.
  • [27] Koda E., Osiński P., Kiersnowska A., Kawalec J., Stabilizacja georusztem heksagonalnym podłoża pod trasę narciarską na składowisku, Acta Sci. Pol. Architectura 15(4), 2016.
  • [28] Koerner R.M., Designing with Geosynthetics - 6th Edition. Vol. 1(1), USA, 2012.
  • [29] Kongkitkul W., Chantachot T. and Tatsuoka F. Simulation of geosynthetic load–strain–time behaviour by the non-linear three-component model. Geosynthetics International, 2014, 21, No. 4.
  • [30] Lee W.F., Lin S.S., Chang D.T.T, Lin S.Y.: Influence of strain rate on geosynthetic reinforcement properties, Geosynthetics - 7 ICG - Delmas, Gourc & Girard 2002.
  • [31] Miszkowska A., Stępień S., Jasko A., Koda E., Wpływ temperatury na parametry wytrzymałościowe geotkaniny wykorzystywanej do budowy konstrukcji oporowej na składowisku, Warszawa 2015.
  • [32] Morgenstern N.R. and Price V., The analysis of the stability of general slip surface. Géotechnique, l5(1): 79–93, 1965.
  • [33] Paula A.M., Pinho-Lopes M., Constitutive Modelling of Short-Term Tensile Response of Geotextile Subjected to Mechanical and Abrasion Damages. Int. J. of Geosynth. and Ground Eng. 7, 67, 2021.
  • [34] Sawicki A. and Kazimierowicz-Frankowska K., Influence of Strain Rate on the Load-Strain Characteristics of Geosynthetics, Geosynthetics International, Vol. 9, No. 1, pp. 1–19,2002
  • [35] Shukla S. K, Yin J., Fundamentals of geosynthetic engineering, CRC Press, 2006.
  • [36] Shukla S. K., An introduction to Geosynthetic Engineering, CRC Press, 2017.
  • [37] Stein R.S., Powers J., Topics in polimer physics. London Imperial College Press 2006.
  • [38] Stępień S., Szymański A. 2015. Influence of strain rate on tensile strength of woven geotextile in the selected rangeof temperature. Studia Geotechnica et Mechanica, Vol. 37(2), 57–60.
  • [39] Stępień S., Szymański A., Influence of Strain Rate on Tensile Strength of Woven Geotextile in the Selected Range of Temperature, Studia Geotechnica et Mechanica, Vol. 37, No. 2, 2015.
  • [40] Wysokiński L., Kotlicki W., Projektowanie konstrukcji oporowych, stromych skarp i nasypów z gruntu zbrojonego geosyntetykami. Instrukcje, Wytyczne, Poradniki 429/2008, Warszawa 2008.
  • [41] Yang G., Zhang B., Zhou P. Lv, Q., Behaviour of geogrid reinforced soil retaining wall with concrete-rigid facing, Geotext. Geomembranes, 27 (5) (2009), pp. 350–356.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1202016-529a-4089-b68d-802a69be0e21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.