PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optimization of Direct Direction Finding Method with Two-Dimensional Correlative Processing of Spatial Signal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the main parameter of the correlative-interferometric direction finding method with twodimensional correlative processing of spatial signal in the aperture of a linear antenna array (AA) is determined as the value of spatial shift within the AA aperture. The corresponding objective function is also formed. Analytical optimization of this parameter is presented and a comparative analysis of analytical calculations based on simulation results is conducted. In the simulation, a range of dependencies of the middle square deviation of estimation of direction on the value of the spatial shift for a signal-to-noise ratio of 0 dB, for minimum 3-sample and 4-sample Blackman-Harris windows of the spectral analysis, is received. The value of the middle square deviation of estimation of direction will be minimal and will equal 0.02 degrees using a minimum 3-sample Blackman-Harris window with the −67 dB level of side lobes. It offers high noise immunity and high accuracy of direction finding.
Rocznik
Tom
Strony
46--53
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • Zhytomyr State Technological University, Zhytomyr, Ukraine
  • Zhytomyr State Technological University, Zhytomyr, Ukraine
Bibliografia
  • [1] G. Kratschmer (Ed.), Introduction into Theory of Direction Finding. Radiomonitoring and Radiolocation 2010/2011. Munich: Rohde & Schwarz GmbH & Co. HW – UKD, 2011, pp. 85-101.
  • [2] A. M. Rembovskiy, A. V. Ashyhmin, and V. A. Kuzmin, Radiomonitoring – tasks, methods, devices – 2nd ed. Hotline – Telecom, 2010.
  • [3] V. V. Tsyporenko and V. G. Tsyporenko, “Development of direct method of direction finding with two-dimensional correlative processing of spatial signal”, Eastern-Europ. J. of Enterpr. Technologies vol. 6, no. 84, pp. 63–70, 2016 (doi: 10.15587/1729-4061.2016.85599).
  • [4] J.-H. Lee and J.-M. Woo, “Interferometer direction finding system with improved DF accuracy using two different array configurations”, IEEE Anten. and Wirel. Propag. Let., vol. 14, pp. 719–722, 2014 (doi: 10.1109/LAWP.2014.2377291).
  • [5] J. Yang, W. Chen, L. Li, and X. Ni, “Long baseline direction finding and localization algorithms for noise radiation source”, in Proc. 12th Int. Conf. on Signal Process. ICSP 2014, Hangzhou, Zhejiang, China, 2014, pp. 52–57 (doi: 10.1109/ICOSP.2014.7014968).
  • [6] H. Gazzah, J. P. Delmas, and S. M. J. Larsys, “Direction-finding arrays of directional sensors for randomly located sources”, IEEE Transac. on Aerospace and Elec. Sys., vol. 52, no. 4, pp. 1995–2003, 2016 (doi: 10.1109/TAES.2016.150655).
  • [7] S. Van Doan, J. Vesely, P. Janu, P. Hubacek, and X. L. Tran, “Optimized algorithm for solving phase interferometer ambiguity”, in Proc. 17th Int. Radar Symp. IRS 2016, Krak´ow, Poland, 2016, pp. 1–6 (doi: 10.1109/IRS.2016.7497353).
  • [8] X. Fu, N. D. Sidiropoulos, W.-K. Ma, and J. Tranter, “Blind spectra separation and direction finding for cognitive radio using temporal correlation-domain ESPRIT”, in Proc. 39th Int. Conf. on Acoustics, Speech and Signal Proces. ICASSP 2014, Florence, Tuscany, Italy, 2014, pp. 7749–7753 (doi: 10.1109/ICASSP.2014.6855108).
  • [9] K. V. Rangarao and S. Venkatanarasimhan, “Gold-MUSIC: A variation on MUSIC to accurately determine peaks of the spectrum”, IEEE Transac. on Anten. and Propag., vol. 61, no. 4, pp. 2263–2268, 2013 (doi: 10.1109/TAP.2012.2232893).
  • [10] W. Chen, X. Xu, S. Wen, and Z. Cao, “Super-resolution direction finding with far-separated subarrays using virtual array elements”, IET Radar, Sonar & Navigation, vol. 5, no. 8, pp. 824–834, 2011 (doi: 10.1049/iet-rsn.2010.0289).
  • [11] V. V. Karavajev and V. V. Sazonov, Statistic theory of passive location. Moscow: Radio and Communication, 1987 [in Russian].
  • [12] Q. Cui, J. Wang, J. Han, and X. Tao, “Pattern optimisation algorithm for vertical cell splitting system with active antenna arrays”, IET Elec. Let., vol. 50, no. 20, pp. 1416–1417, 2014 (doi: 10.1049/el.2014.2023).
  • [13] J.-H., Lee, J.-H. Lee, and J.-M. Woo, “Method for obtaining threeand four-element array spacing for interferometer direction-finding system”, IEEE Anten. and Wirel. Propag. Let., vol. 15, pp. 897–900, 2016 (doi: 10.1109/LAWP.2015.2479224).
  • [14] T. S´anchez, C. G´omez, G. I. Angel Castillo, and M. Pati˜no Bernal, “Radio direction finding system for spectrum management activities in developing countries”, in Proc. 17th Int. Symp. on Anten. and Propag. APSURSI 2016, Fajardo, Puerto Rico, 2016, pp. 1663–1664 (doi: 10.1109/APS.2016.7696538).
  • [15] G. Fornarelli and L. Mescia, Swarm Intelligence for Electric and Electronic Engineering. Hershey, PA, USA: IGI Global, 2012 (ISBN: 9781466626669).
  • [16] J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications, 4th Edition. Upper Saddle River, NJ, USA: Prentice-Hall Inc., 2006 (ISBN: 9780131873742).
  • [17] F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform”, Proc. of the IEEE, vol. 66, no. 1, pp. 51–83, 1978 (doi: 10.1109/PROC.1978.10837).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e11d48d4-63eb-4d9f-9fa2-f5e2a4c5509c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.