PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Egzopolisacharydy bakteryjne : budowa i funkcje

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Bacterial exopolysaccharides : structure and functions
Języki publikacji
PL
Abstrakty
EN
Exopolysaccharides fulfil protective functions and allow bacteria live in the communities, single or mixed, by facilitating adhesion to surfaces and to each other. Microbes prefer to exist in the form of a biofilm. The term biofilm was introduced in 1978 and is the group of microorganisms surrounded by extracellular, highly hydrated mucus, which allows adhesion on various surfaces and adhesion of cells to each other [1]. The extracellular slime owes its character mainly due to the presence of exopolysaccharides. Bacteria living in biofilms, have a high resistance to external factors, such as changes in temperature, pH, humidity, oxygenation, presence of bacteriocins, antibodies or antibiotics. They may be up to 1,000 times more resistant to antibiotics than planktonic forms. They can be synthesized inside and outside bacteria cell. The structure of the bacterial exopolysaccharide is very diverse, but very often, due to the presence of uronic acid residues, or non-sugar organic acids as pyruvic acid, succinic acid, as well as residues of inorganic acids such as phosphoric acid or sulfuric acid, they are negatively charged particles. In addition, a characteristic of most of the exopolysaccharides (EPS) is their enormous molecular mass of up to several million g/mol [11]. Thanks to its rheological properties, ease of isolation, and often biodegradable antioxidant activity extracellular polysaccharides are increasingly used in industry as a gelling agents, hardening and thickening agents, emulsifiers, food coatings and pharmaceutical products. In addition, they can be used as bandages, anti-cancer agents, cholesterol-lowering, antiulcer or immunomodulators [20–27]. This article discusses in details the selected exopolysaccharides such as xanthan, gellan, exopolysaccharides of lactic acid bacteria, dextran, bacterial cellulose, alginic acid, hyaluronic acid, mannans.
Rocznik
Strony
473--496
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
  • Wydział Chemii Uniwersytetu Gdańskiego. ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego. ul. Wita Stwosza 63, 80-308 Gdańsk
  • Wydział Chemii Uniwersytetu Gdańskiego. ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego. ul. Wita Stwosza 63, 80-308 Gdańsk
autor
  • Wydział Chemii Uniwersytetu Gdańskiego. ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] J.W. Costerton, G.G. Gessey, K.J. Cheng, Sci. Am., 1978, 238, 86.
  • [2] J.J. Harrison, R.J. Turner, L.L.R. Marques, H. Ceri, Am. Scient., 2005, 93, 508.
  • [3] J.W. Costerton, P.S. Stewart, E.P. Greenberg, Science 1999, 284, 1318.
  • [4] B. Vu, M. Chen, R.J. Crawford, E.P. Ivanowa, Molecules, 2009, 14, 2535.
  • [5] M. Rivas, M. Seeger, D.S. Holmes, E. Jedlicki, Biol. Res., 2005, 38, 283.
  • [6] D.G. Davies, M.R. Parsek, J.P. Pearson, B.H. Iglewski, J.W. Costerton, E.P. Greenberg, Science, 1998, 280, 295.
  • [7] A.L. Spoering, K. Lewis, J. Bacteriol., 2001, 183, 6746.
  • [8] P.S. Stewart, J.W. Costeron, Lancet, 2001, 358, 135.
  • [9] I. W. Sutherland, Microbiology, 2001, 147, 3.
  • [10] S. Tsuneda, H. Aikawa, H. Hayashi, A. Yuasa, A. Hirata, FEMS Microbiol. Lett., 2003, 223, 287.
  • [11] R. Weiner, S. Langille, E. Quintero, J. Industr. Microbiol., 1995, 15, 339.
  • [12] A. S. Kumar, K. Mody, B. Jha, J. Basic Microbiol., 2007, 47, 103.
  • [13] P.R. Reeves, M. Hobbs, M.A. Valvano, M. Skurnik, C. Withfield, D. Coplin, N. Kido, J. Klena, D. Maskell, C.R.H. Raetz, P.D. Rick, Trends Microbiol., 1996, 4, 495.
  • [14] W.M. De Vos, Curr. Opin. Biotechnol., 1999, 10, 498.
  • [15] F.J. Vorhölter, S. Schneiker, A. Goesmann, L. Krause, T. Bekel, O. Kaiser, B. Linke, T. Patschkowski, C. Rückert, J. Schmid, V. K. Sidhu, V. Sieber, A. Tauch, S.A. Watt, B. Weisshaar, A. Becker, K. Niehaus, A. Pühler, J. Biotechnol., 2008, 134, 33.
  • [16] F. Katzen, D.U. Ferreiro, C.G. Oddo, M.V. Ielmini, A. Becker, A. Pühler, L. Ielpi1, J. Bacteriol., 1998, 180, 1607.
  • [17] K. Born, V. Langendorff, P. Boulenguer, Xanthan, Biotechnology of Biopolymers, John Wiley & Sons, Inc., 2004.
  • [18] A. Becker, F.J. Vorhälter, Xanthan Biosynthesis by Xanthomonas Bacteria: an Overview of Current Biochemical and Genomic Data, Microbial production of biopolymers and polymer precursors: applications and perspectives, Horizon Scientific Press, 2009.
  • [19] A.E. Ghaly, F. Arab, N.S. Mahmoud, J. Higgins, Am. J. Biotech. & Biochem., 2007, 3, 47.
  • [20] C. Zhenming, F. Yan, Journal of Ocean University of China, 2005, 4, 67.
  • [21] G.T. Lamothe, L. Jolly, B. Mollet, F. Stingele, Arch. Microbiol., 2002, 178, 218.
  • [22] S.M. Deutsch, H. Falentin, M. Dols-Lafargue, G. LaPointe, D. Roy, Int. J. Food Microbiol., 2008, 125, 252.
  • [23] T.S. El-Tayeb, T.A. Khodair, J. Appl. Sci. Res., 2007, 3, 1564.
  • [24] H. Trommer, R.H.H. Neubert, Int. J. Pharmaceutics, 2005, 298, 153.
  • [25] S.N. Aslam, M.A. Newman, G. Erbs, K.L. Morrissey, D. Chinchilla, T. Boller, T.T. Jensen, C. De Castro, T. Ierano, A. Molinaro, R.W. Jackson, M.R. Knight, R.M. Cooper, Curr. Biol., 2008, 18, 1078.
  • [26] P.A. Sanford, I.W. Cottrell, D.J. Pettitt, Pure Appl. Chem., 1984, 56, 879.
  • [27] L. Wang, S. Li, Y. Li, FEMS Microbiol. Lett., 2003, 220, 21.
  • [28] I.W. Sutherland, Trends Biotechnol., 1998, 16, 41.
  • [29] R. Van Kranenburg, I.C. Boels, M. Kleerebezem, W.M. De Vos, Curr. Opin. Biotechnol., 1999, 10, 498.
  • [30] J.A. Casas, V.E. Santos, F. Garcia-Ochoa, Enz. Microb. Technol., 2000, 26, 282.
  • [31] B. Katzbauer, Polym. Degrad. Stabil., 1998, 59, 81.
  • [32] M.J. López, M.C. Vargaz-García, F. Suarez-Estrella, J. Moreno, J. Food Eng., 2004, 63, 111.
  • [33] K. Myszka, K. Czaczyk, Żywność. Nauka. Technologia. Jakość, 2004, 4, 18.
  • [34] B. Vu, M. Chen, R.J. Crawford, E.P. Ivanowa, Molecules, 2009, 14, 2535.
  • [35] I. Rottava, G. Batesini, M.F. Silva, L. Lerin, D. Oliveira, F.F. Padilha, G. Toniazzo, A. Mossi, R.L. Cansian, M. Luccio, H. Treichel, Carohydr. Polym., 2009, 77, 65.
  • [36] F. Alvarez-Manceñido, K. Braeckmans, S. De Smedt, J. Demeester, M. Landin, R. Martínez- Pacheco, Int. J. Pharmaceutics, 2006, 316, 37.
  • [37] T.M.B. Bresolin M., Milas, M. Rinaudo, F. Reicher, J.L.M.S. Ganter, Int. J. Biol. Macromol., 1999, 26, 225.
  • [38] A. J. Jay, I.J. Colquhoun, M.J. Ridout, G.J. Brownsey, V.J. Morris, A.M. Fialho, J.H. Leitão, I.S. Correia, Carbohydr. Polym., 1998, 35, 179.
  • [39] P.J. Wilson, B.J. Howlin, G.A. Webb, J. Mol. Struct., 1996, 385, 185.
  • [40] A.M. Fialho, L.M. Moreira, A.T. Granja, A.O. Popescu, K. Hoffmann, I. Sá-Correia, Appl. Microbiol. Biotechnol., 2008, 79, 889.
  • [41] E.J. Faber, P. Zoon, J.P. Kamerling, J.F.G. Vliegenthart, Carbohydr. Res., 1998, 310, 269.
  • [42] E.L. Nordmark, Z. Yang, E. Huttunen, G. Widmalm, Biomacromolecules, 2005, 6, 105.
  • [43] A.D. Welman, I.S. Maddox, TRENDS Biotechnol., 2003, 21, 269.
  • [44] S. Bielecki, A. Krystynowicz, M. Turkiewicz, H. Kalinowska, Bacterial cellulose, Biopolymers, Wiley-Vch Verlag GmbH & Co. KgaA, Weinheim 2002.
  • [45] I.M.G. Martins, S.P. Magina, L. Oliveira, C.S.R. Freire, A.J.D. Silvestre, C.P. Neto, A. Gandini, Compos. Sci. Technol., 2009, 69, 2163.
  • [46] A. Krystynowicz, W. Czaja, A. Wiktorowska-Jezierska, M. Concalves-Miśkiewicz, M. Turkiewicz, S. Bielecki, J. Ind. Microbiol. Biotechnol., 2002, 29, 189.
  • [47] T. Tsuchida, F. Yoshinaga, Pure & Appl. Chem., 1997, 69, 2453.
  • [48] W.G. Haigh, Biochem. J., 1977, 135, 145.
  • [49] S.S. Wong, S. Kasapis, Y.M. Tan, Carbohydr. Polym., 2009, 77, 280.
  • [50] U. Remminghorst, B.H. Rehm, Biotechnol. Lett., 2006, 28, 1701.
  • [51] N. Schürks, J. Wingender, H.C. Flemming, C. Mayer, Int. J. Biol. Macromol., 2002, 30, 105.495
  • [52] C. Ouwerx, N. Velings, M.M. Mestdagh, M.A.V. Axelos, Polym. Gels Netw., 1998, 6, 393.
  • [53] H. Ertesvåg, S. Valla, Polym. Degrad., Stab., 1998, 59, 85.
  • [54] T.C. Laurent, J.R.E. Fraser, FASEB J., 1992, 6, 2397.
  • [55] A. Ballini, S. Cantore, S. Capodiferro, F.R. Grassi, Int. J. Med. Sci., 2009, 6, 65.
  • [56] J.M. Song, J.H. Im, J.H. Kang, D.J. Kang, Carbohydr. Polym., 2009, 78, 633.
  • [57] N. Izawa, T. Hanamizu, R. Iizuka, T. Sone, H. Mizukoshi, K. Kimura, K. Chiba, J. Biosci. Bioeng., 2009, 107, 119.
  • [58] A. Albersdörfer, E. Sackmann, Eur. Phys. J. B, 1999, 10, 663
  • [59] B.F. Chong, L.M. Blank, R. McLaughlin, L.K. Nielsen, Appl. Microbiol. Biotechnol., 2005, 66, 341.
  • [60] W.B. Severn, R.H. Furneaux, R. Falshaw, P.H. Atkinson, Carbohydr. Res., 1998, 308, 397.
  • [61] R.H. Furneaux, C.L. Landersjö, J.L. McCullough, W.B. Severn, Carbohydr. Res., 2005, 340, 1618.
  • [62] E. Maes, B. Codeville, L. Kremer, Y. Guérardel, Glycoconj. J., 2007, 24, 439.
  • [63] E. Katzenellenbogen, N.A. Kocharova, G.V. Zatonsky, J. Kübler-Kiełb, A. Gamian, S. Shaskov, Y.A. Knirel, E. Romanowska, FEMS Immunol. Med. Microbiol., 2001, 30, 223.
  • [64] Y. Herasimenka, P. Cesutti, G. Impallomeni, R. Rizzo, Carbohydr. Res., 2007, 342, 2404.
  • [65] N. Paramonov, M. Rangarajan, A. Hashim, A. Gallagher, J. Aduse-Opoku, J.M. Slaney, E. Hounsell, M.A. Curtis, Mol. Microbiol., 2005, 58, 847.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e11b02a1-4380-4532-8bca-bf82c39b516d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.