Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to examine the relationship between vertical movements of the Earth’s crust and variation in geoid height. Data from the Gravity Recovery and Climate Experiment (GRACE), precise levelling, tidal gauge observations and Global Navigation Satellite Systems (GNSS) stations for the Sudetes area were used. The GRACE data provided the possibility of the analysis of geopotential changes. The geoid heights were calculated for the period from April 2002 to March 2016, using data from GeoForschungsZentrum (GFZ) GRACE Level-2 Product Release 05 in the form of spherical harmonic coefficients, truncated at degree and order (d/o) 60. Different filters were used. The calculated geoid change over time has the approximate value of 0.16 mm/y. This value was compared to the expected change in geoid height, determined on the basis of the Earth’s crustal movements.
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--57
Opis fizyczny
Bibliogr. 38 poz., rys, tab., wykr.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Geodesy, Geospatial and Civil Engineering, Heweliusza 12, 10-724 Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Geodesy, Geospatial and Civil Engineering, Heweliusza 12, 10-724 Olsztyn, Poland
Bibliografia
- 1. Agren, J. & Svensson, R., 2007. Postglacial land uplift model and system definition for the new Swedish height system RH 2000. LMV Rapport 2007: 4. Lantmäteriverket, Gävle, Sweden.
- 2. Bednarczyk, M., Biryło, M., Dawidowicz, K., Hlotov, V., Kowalczyk, K., Kwartnik-Pruc, A. & Wróbel, A., 2015. A relation between a vertical crustal movement from spirit levelling and glacial isostatic adjustment (GIA) from GRACE data in the area of Poland. In: Dawidowicz, K. (ed.), Modern Geodetic Techniques in Spatial Measurement. Croatian Information Technology Society, GIS Forum, Zagreb, pp. 76-87.
- 3. Dahle, C., Flechtner, F., Gruber, C., Konig, D., Konig, R., Michalak, G. & Neumayer, K.-H., 2012. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005. GeoForschungsZentrum, Potsdam, 21 pp. DOI: 10.2312/GFZ.b103-1202-25.
- 4. Ekman, M. & Mäkinen J., 1996. Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophysical Journal International, 126: 229-234.
- 5. Jamroz, O., Badura, J. & Makolski, K., 2014. Application of the precision levelling method to evaluate the vertical movements within eastern part of the Elbe Fault System (SW Poland, Western Sudetes). Acta Geodynamica et Geomaterialia, 11: 295-304.
- 6. Jeffreys, H., 1970. The Earth. Its Origin, History and Physical Construction. University Press, Cambridge, 574 pp.
- 7. Kakkuri, J., 1987. Character of the Fennoscandian land uplift in the 20th century. Geological Survey of Finland, Special Paper, 2: 15-20.
- 8. Kontny, B. & Bogusz, J., 2012. Models of vertical movements of the Earth crust surface in the area of Poland derived from leveling and GNSS data. Acta Geodynamica et Geomaterial- ia, 9: 167.
- 9. Kowalczyk, K., 2005. Determination of land uplift in the area of Poland. Proceedings of the 6th International Conference "Environmental Engineering”, May 26-27, 2005, Vilnius, Lithuania. Vilnius Gediminas Technical University Press, ‘Technika’, Vilnius, pp. 903-907.
- 10. Kowalczyk, K., 2006a. Modelling the vertical movements of the Earth’s crust with the help of the collocation method. Reports on Geodesy, 2/77: 171-178.
- 11. Kowalczyk, K., 2006b. New model of the vertical crustal movements in the area of Poland. Geodezija i Kartografija, 32: 83-87.
- 12. Kowalczyk, K., 2006c. The comparison of the present movements of the Poland’s earth crust with the previous researches. Przegląd Geodezyjny, 78: 4-7. [In Polish, with English summary.]
- 13. Kowalczyk, K., Bogusz, J. & Figurski, M., 2014. The analysis of the selected data from Polish Active Geodetic Network stations with the view on creating a model of vertical crustal movements. In: Cygas, D. & Tomaz, Tollazzi, T. (eds), Proceedings of the 9th International Conference "Environmental Engineering", May 22-23, 2014, Vilnius, Lithuania. Vilnius Gediminas Technical University Press, ‘Technika’, Vilnius, 6 pp. DOI: 10.3846/enviro.2014.221.
- 14. Kowalczyk, K. & Rapinski, J., 2013. Evaluation of levelling data for use in vertical crustal movements model in Poland. Acta Geodynamica et Geomaterialia, 10: 401-410.
- 15. Kowalczyk, K. & Rapinski, J., 2017. Robust network adjustment of vertical movements with GNSS data. Geofizika, 34: 45-65.
- 16. Kryński, J., Kloch-Glowka, G. & Szelachowska, M., 2014. Analysis of time variations of the gravity field over Europe obtained from GRACE data in terms of geoid height and mass variation. In: Rizos, C. & Willis, P. (eds), Earth on the Edge: Science for a Sustainable Planet; International Association of Geodesy Symposia, 139: 365-370. Springer, Berlin, Heidelberg.
- 17. Krzan, G., Dawidowicz, K., Stępniak, K. & Świątek, K., 2016. Determining normal heights with the use of Precise Point Positioning. Survey Review, 49(355): 259-267.
- 18. Kuczynska-Siehien, J., Lyszkowicz, A., Stepniak, K. & Krukowska, M., 2016. Determination of geopotential value W0 at Polish tide gauges from GNSS data and geoid model. Acta Geodaetica et Geophysica, 52: 527-534.
- 19. Kusche, J., 2007. Approximate decorrelation and non-isotropic smoothing of time variable GRACE-type gravity field models. Journal of Geodesy, 81: 733-749.
- 20. Kusche, J., Schmidt, R., Petrovic, S. & Rietbroek, R., 2009. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. Journal of Geodesy, 83: 903-913.
- 21. Lidberg, M., Johansson, J. M., Scherneck, H. G. & Davis, J. L., 2007. An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. Journal of Geodesy, 81: 213-230.
- 22. Mäkinen, J., Ekman, M., Midtsundstad, A. & Remmer, O., 1985. The Fennoscandian Land Uplift Gravity Lines 1966-1984. Finnish Geodetic Institute, Masala, Finland.
- 23. Mäkinen, J., Engfeldt, A., Harsson, B. G., Ruotsalainen, H., Strykowski, G., Oja, T. & Wolf, D., 2005. The Fennoscandian land uplift gravity lines 1966-2003. Gravity, Geoid and Space Missions, 30.08-03.09 2004, Porto, Portugal. IAG Symposia, 129: 328-332. Springer, Berlin, Heidelberg, DOI: 10.1007/3- 540-26932-0_57.
- 24. Muller, J., Neumann-Redlin, M., Jarecki, F., Denker, H. & Gitlein, O., 2006. Gravity changes in northern Europe as observed by GRACE. In: Tregoning, P. & Rizos, C. (eds), Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, 22-26August 2005, Cairns, Australia, Dynamic Planet. IAG Symposium, 130: 523-527. Springer, Berlin, Heidelberg.
- 25. Oberc, J. & Woźniak J., 1978. Estimation of vertical crustal movements in the south-western Poland in the light of field levelling data. Kwartalnik Geologiczny, 22: 215-226. [In Polish, with English summary.]
- 26. Root, B. C., Wal, W., Novák, P., Ebbing, J. & Vermeersen, L. L. A., 2015. Glacial isostatic adjustment in the static gravity field of Fennoscandia. Journal of Geophysical Research, Solid Earth, 120: 503-518.
- 27. Sjoberg, L. E., 1982. Studies on the Land Uplift and its Implications on the Geoid in Fennoscandia. Report 14. University of Uppsala Institute of Geophysics, Department of Geodesy, Uppsala, 26 pp.
- 28. Sjoberg, L. E., 1989. The secular change of gravity and the geoid in Fennoscandia. In: Gregersen, S. & Basham, P. W. (eds), Earthquakes at North-Atlantic Passive Margins. Neotectonics and Postglacial Rebound, 266: 125-139. Springer Science & Business Media, Netherlands. DOI 10.1007/978-94-009- 2311-9_9.
- 29. Steffen, H., Denker, H. & Muller, J., 2008. Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamical models. Journal of Geodynamics, 46: 155-164.
- 30. Steffen, H., Petrovic, S., Muller, J., Schmidt, R., Wunsch, J., Barthelmes, F. & Kusche, J., 2009. Significance of secular trends of mass variations determined from GRACE solutions. Journal of Geodynamics, 48: 157-165.
- 31. Steffen, R., Steffen, H., Wu, P., & Eaton, D. W. 2015. Reply to comment by Hampel et al. on “Stress and fault parameters affecting fault slip magnitude and activation time during a glacial cycle”. Tectonics, 34: 2359-2366.
- 32. Stemberk, J., Košťák, B. & Cacoń, S., 2010. A tectonic pressure pulse and increased geodynamic activity recorded from the long-term monitoring of faults in Europe. Tectonophysics, 487: 1-12.
- 33. Swenson, S. & Wahr, J., 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33: L08402.
- 34. Torge, W., 1989. Gravimetry. Walter de Gruyter, Berlin, New York, 465 pp.
- 35. Wahr, J. & Velicogna, I., 2003. What might GRACE contribute to studies of postglacial rebound? Space Science Reviews, 108: 319-330.
- 36. Walo, J., Próchniewicz, D., Olszak, T., Pachuta, A., Andrasik, E. & Szpunar, R., 2016. Geodynamic studies in the Pieniny Klippen Belt in 2004-2015. Acta Geodynamica et Geomaterialia, 13: 351-362.
- 37. Wyrzykowski, T., 1987. Nowe wyznaczenie prędkości współczesnych pionowych ruchów powierzchni skorupy ziemskiej na obszarze Polski. Prace Instytutu Geodezji i Kartografii, 34: 41-64. [In Polish.]
- 38. ICGEM, 2017. Gravity Field Solutions for dedicated Time Periods, http://icgem.gfz-potsdam.de/series/01_GRACE_monthly/GFZ%20Release%2005 [07.05.2018].
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e1161722-6c3d-4977-8b61-852e80e34ebf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.