PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

GC investigation of post-irradiation oxidation phenomena on polypropylene

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH-2020 (04–07.10.2020; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The paper summarizes the results of research on gas products of polypropylene (PP) radiolysis. Particular attention was paid to the phenomena of post-radiation degradation of PP. The protective effect of selected aromatic compounds was investigated. The research was carried out both from the point of view of obtaining radiation-resistant PP varieties and the possibility of accelerating biodegradation phenomena, e.g., PP/cellulose composition. The phenomena of post-radiation chain oxidation of PP were investigated by gas chromatography (GC). The GC in the system used (packed column, thermal conductivity detector, argon – carrier gas) enables the determination of H2, O2, CO, and CH4 in one measurement. The samples were irradiated with electron beams (EBs) accelerated in accelerators: Elektronika 10/10 with a power of 10 kW and energy of 10 MeV and LAE 13/9 with a power of 9 kW and energy up to 13 MeV. In the tests, PP without stabilizing additives (obtained directly from the production line) and non-stabilized styrene were used. Radiolytic efficiency of hydrogen evolution allowed us to estimate the number of originally formed free radicals. The maintenance of the secondary oxidation processes was the loss of oxygen and the formation of oxidation products (CO, CH4). Attention is paid to the protective effect of aromatic compounds (polystyrene (PS), polyethylene terephthalate (PET), anthracene, fluoranthene, acenaphthene, pyrene, naphthalene) both at the stage of hydrogen atom separation and the secondary oxidation process. The examples of post-radiation oxidation of PP irradiated in cryogenic conditions (–196°C) are presented. All used aromatic compounds showed a protective effect in PP radiolysis. We suppose that this phenomenon is responsible for the charge transfer along the polymer chain from the ionization spurs to the aromatic compound. The protective ranges of PS in PP radiolysis were estimated for the variously prepared PP/PS type compositions from 6 mers to 28 mers.
Czasopismo
Rocznik
Strony
187--192
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
  • Institute of Nuclear Chemistry and Technology Dorodna 16 Str., 03-195 Warsaw, Poland
Bibliografia
  • 1. Mowery, D. M., Assink, R. A., Derzon, D. K., Klamo, S. B., & Clough, R. L. (2007). Radiation oxidation of polypropylene: A solid-state13C NMR study using selective isotopic labeling. Radiat. Phys. Chem., 76, 864–878. DOI: 10.1016/j.radphyschem.2006.06.007.
  • 2. Sugano-Segura, A. T. R., Tavares, L. B., Rizzia, L. B.,Rosaa, D. S., Salvadori, M. C., & dos Santos, D. J. (2017). Mechanical and thermal properties of electron beam-irradiated polypropylene reinforced with Kraft lignin. Radiat. Phys. Chem., 139, 5–10. DOI: 10.1016/j.radphyschem.2017.05.016.
  • 3. Butnaru, E., Darie-Nita, N. R., Zaharescu, T., Balaes, T., Tănase, C., Hitruc, H., Doroftei, F., & Vasile, C. (2016). Gamma irradiation assisted fungal degradation of the polypropylene/biomass composites. Radiat. Phys. Chem., 125, 134–144. doi.org/10.1016/j.radphyschem.2016.04.003.
  • 4. Bojarski, J., Bułhak, Z., Burlińska, G., Kałuska, I., Zimek, Z., & Szwojnicka, D. (1995). Medical quality of the radiation resistant polypropylene. Radiat. Phys. Chem., 46(4/6), 801–804.
  • 5. Yoshii, F., Makuuchi, K., & Ishigsaki, I. (1988). Durability of radiation–sterilized polymer X. Effect of molecular weight on stability during storage after irradiation of polypropylene. Polym. Commun., 29, 145.
  • 6. Głuszewski, W., & Zagórski, Z. P. (2008). Radiation effects in polypropylene/polystyrene blends as the model of aromatic protection effects. Nukleonika, 53(Suppl. 1), S21–S24.
  • 7. Głuszewski, W. (2019). The use of gas chromatography for the determination of radiolytic molecular hydrogen, the detachment of which initiates secondary phenomena in the radiation modification of polymers. Polimery, 64(10), 44–49. dx.doi.org/10.14314/polimery.2019.10.7.
  • 8. Zagórski, Z. P. (2003). Diffuse reflection spectrophotometry (DRS) for recognition of products or radiolysis in polymers. Int. J. Polym. Mat., 52, 323–333. doi.org/10.1080/00914030304917.
  • 9. Bik, J., Głuszewski, W., Rzymski, W. M., & Zagórski, Z. P. (2003). EB radiation crosslinking of elastomers. Radiat. Phys. Chem., 67, 421–423. DOI: 10.1016/S0969-806X(03)00078-1.
  • 10. Głuszewski, W., & Okrój, N. (2021). Radiation stability of high test peroxide (HTP). Radiat. Phys. Chem., 183, 109399, 1–4. doi.org./10.1016/j.radphyschem.2021.109399.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e11603d2-1d84-4dc1-b254-1dc3fd0d72e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.